Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mixing and Sampling
2.3. Measuring Procedures
3. Results and Discussion
3.1. Bulk Density and Open Porosity Results
3.2. Mechanical Properties
3.3. Water Transport Characteristics—Capillary Water Absorption
3.4. Hydration Process Cement Pastes with Biochar
3.5. Thermogravimetric Analysis of 28-Day Cement Paste Specimens
3.6. Mineraloxical Composition of 28-Day Cement Paste Specimens
4. Conclusions
- The produced biochar with a similar particle size distribution to that obtained for PC I represented material with almost a 2.5 times higher specific surface area in comparison with PC I. This aspect resulted in the gradual decrease in workability of cement paste with increased biochar dosages.
- Softwood-based biochar additions help partially reduce the open porosity of produced specimens concerning the reference. At the curing period of 7 days, the most noticeable porosity decrease was detected for P-WB 0.5 and P-WB 1.0. With a continuing hydration process of up to 28 days, the lowest open porosity was detected for the specimen with 1.0 wt.% of admixture.
- From the point of view of mechanical resistivity, biochar additions of 1.0–2.0 wt.% seem to be a practical choice in the formation of a cement-based matrix with higher strength performance. The highest flexural strength increases by more than 21% (at 7 days) and 16% (at 28 days) were recorded for P-WB 2.0, with respect to P-R. In the same specimen, the highest compressive strengths were also detected.
- The water suction was significantly lower for specimens containing softwood-based biochar additives than for P-R. The lowest ability for water uptake was reported for specimens with 1.0 wt.% biochar content when the absorption coefficient was found to decrease by 27.3% and 38.9% after 7- and 28-day-cured periods, respectively.
- A partial increase in heat evolution after 3 days was observed during the hydration process specimens containing biochar.
- Obtained mineralogical composition of and biochar-dosed pastes revealed higher consumption of clinker minerals and increased formation of portlandite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bukhtiyarova, M.; Lunkenbein, T.; Kähler, K.; Schlögl, R. Methanol Synthesis from Industrial CO2 Sources: A Contribution to Chemical Energy Conversion. Catal. Lett. 2017, 147, 416–427. [Google Scholar] [CrossRef]
- Altıkat, A.; Alma, M.H.; Altıkat, A.; Bilgili, M.E.; Altıkat, S. A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability 2024, 16, 937. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Yuan, X.; Li, Y.; Han, L. Effect of Pyrolysis Temperature and Correlation Analysis on the Yield and Physicochemical Properties of Crop Residue Biochar. Bioresour. Technol. 2020, 296, 122318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Han, G. Production of Solid Fuel Biochar from Waste Biomass by Low Temperature Pyrolysis. Fuel 2015, 158, 159–165. [Google Scholar] [CrossRef]
- Zhang, J.; Su, Y.; Zhang, C.; Li, M.; Zhu, X.; Zhang, Y.; Tsang, D.C.W. Alterations in Rheo-Viscoelastic Properties of Cement Composites with Biochar Incorporation as Bio-Based Admixture. Constr. Build. Mater. 2024, 439, 137358. [Google Scholar] [CrossRef]
- Das, O.; Kim, N.K.; Hedenqvist, M.S.; Lin, R.J.T.; Sarmah, A.K.; Bhattacharyya, D. An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites. Environ. Manag. 2018, 62, 403–413. [Google Scholar] [CrossRef]
- Pomponi, F.; Hart, J.; Arehart, J.H.; D’Amico, B. Buildings as a Global Carbon Sink? A Reality Check on Feasibility Limits. One Earth 2020, 3, 157–161. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.; Graedel, T.; Schellnhuber, H. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Xiao, J. Estimation and Minimization of Embodied Carbon of Buildings: A Review. Buildings 2017, 7, 5. [Google Scholar] [CrossRef]
- Mekky, K.M.; Ibrahim, M.G.; Sharobim, K.; Fujii, M.; Nasr, M. Evaluating Environmental and Economic Benefits of Using Biochar in Concrete: A Life Cycle Assessment and Multi-Criteria Decision-Making Framework. Case Stud. Constr. Mater. 2024, 21, e03712. [Google Scholar] [CrossRef]
- Pokorný, J.; Ševčík, R.; Šál, J. The Design and Material Characterization of Reclaimed Asphalt Pavement Enriched Concrete for Construction Purposes. Materials 2020, 13, 4986. [Google Scholar] [CrossRef] [PubMed]
- Roychand, R.; Li, J.; Kilmartin-Lynch, S.; Saberian, M.; Zhu, J.; Youssf, O.; Ngo, T. Carbon Sequestration from Waste and Carbon Dioxide Mineralisation in Concrete—A Stronger, Sustainable and Eco-Friendly Solution to Support Circular Economy. Constr. Build. Mater. 2023, 379, 131221. [Google Scholar] [CrossRef]
- Kazemian, M.; Shafei, B. Carbon Sequestration and Storage in Concrete: A State-of-the-Art Review of Compositions, Methods, and Developments. J. CO2 Util. 2023, 70, 102443. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Novel Biochar-Concrete Composites: Manufacturing, Characterization and Evaluation of the Mechanical Properties. Sci. Total Environ. 2018, 616–617, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Oner, A.; Akyuz, S.; Yildiz, R. An Experimental Study on Strength Development of Concrete Containing Fly Ash and Optimum Usage of Fly Ash in Concrete. Cem. Concr. Res. 2005, 35, 1165–1171. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng. 2020, 32, 101705. [Google Scholar] [CrossRef]
- Kampragkou, P.; Stefanidou, M. The Role of Different Bio-Additives in the Properties of Cement Mortars. Circ. Econ. Sust. 2025. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H. Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. Thermal Conductivity of Concrete—A Review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Praneeth, S.; Saavedra, L.; Zeng, M.; Dubey, B.K.; Sarmah, A.K. Biochar Admixtured Lightweight, Porous and Tougher Cement Mortars: Mechanical, Durability and Micro Computed Tomography Analysis. Sci. Total Environ. 2021, 750, 142327. [Google Scholar] [CrossRef]
- Sirico, A.; Bernardi, P.; Belletti, B.; Malcevschi, A.; Dalcanale, E.; Domenichelli, I.; Fornoni, P.; Moretti, E. Mechanical Characterization of Cement-Based Materials Containing Biochar from Gasification. Constr. Build. Mater. 2020, 246, 118490. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Asadi Zeidabadi, Z.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, Characterization and Evaluation of Biochar from Agricultural Waste Biomass for Use in Building Materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Sirico, A.; Belletti, B.; Bernardi, P.; Malcevschi, A.; Pagliari, F.; Fornoni, P.; Moretti, E. Effects of Biochar Addition on Long-Term Behavior of Concrete. Theor. Appl. Fract. Mech. 2022, 122, 103626. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Falliano, D.; Carvajal, J.F.; Celi, A.C.B.; Ferro, G.A.; Tulliani, J.M.; Lavagna, L.; Restuccia, L. The Effect of Different Biochar on the Mechanical Properties of Cement-Pastes and Mortars. Buildings 2023, 13, 2900. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Razavi, N.; Ulfberg, A.; Blanksvärd, T.; Sayahi, F.; Simonsson, P.; Reinke, B.; Försth, M.; et al. Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties. Sustainability 2021, 13, 9336. [Google Scholar] [CrossRef]
- Cuthbertson, D.; Berardi, U.; Briens, C.; Berruti, F. Biochar from Residual Biomass as a Concrete Filler for Improved Thermal and Acoustic Properties. Biomass Bioenergy 2019, 120, 77–83. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic Viability. Constr. Build. Mater. 2018, 167, 874–889. [Google Scholar] [CrossRef]
- Sikora, P.; Woliński, P.; Chougan, M.; Madraszewski, S.; Węgrzyński, W.; Papis, B.K.; Federowicz, K.; Ghaffar, S.H.; Stephan, D. A Systematic Experimental Study on Biochar-Cementitious Composites: Towards Carbon Sequestration. Ind. Crops Prod. 2022, 184, 115103. [Google Scholar] [CrossRef]
- EN 196-6; Methods of Testing Cement—Part 6: Determination of Fineness. European Committee for Standardization (CEN): Brussels, Belgium, 2010.
- EN 196-3; Methods of Testing Cement—Part 3: Determination of Setting Times and Soudness. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- Pokorný, J.; Ševčík, R.; Zárybnická, L.; Podolka, L. The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites. Buildings 2023, 13, 1585. [Google Scholar] [CrossRef]
- EN 196-1; Method of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar. European Committee for Standardization (CEN): Brussels, Belgium, 2000.
- EN 1015-10; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization (CEN): Brussels, Belgium, 1999.
- EN 1936; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and Total Open Porosity. European Committee for Standardization (CEN): Brussels, Belgium, 2007.
- Pokorný, J.; Ševčík, R.; Šál, J.; Fiala, L.; Zárybnická, L.; Podolka, L. Bio-Based Aggregate in the Production of Advanced Thermal-Insulating Concrete with Improved Acoustic Performance. Constr. Build. Mater. 2022, 358, 129436. [Google Scholar] [CrossRef]
- EN 1015-18; Methods of Test for Mortar for Masonry. Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- Zárybnická, L.; Pokorný, J.; Machotová, J.; Ševčík, R.; Šál, J.; Viani, A. Study of Keto-Hydrazide Crosslinking Effect in Acrylic Latex Applied to Portland Cements with Respect to Physical Properties. Constr. Build. Mater. 2023, 375, 130897. [Google Scholar] [CrossRef]
- Ling, Y.; Wu, X.; Tan, K.; Zou, Z. Effect of Biochar Dosage and Fineness on the Mechanical Properties and Durability of Concrete. Materials 2023, 16, 2809. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Lavagna, L.; Carvajal, J.F.; Tulliani, J.-M.; Falliano, D.; Restuccia, L. Enhancing Cement Paste Properties with Biochar: Mechanical and Rheological Insights. Appl. Sci. 2024, 14, 2616. [Google Scholar] [CrossRef]
- Zhao, Z.; El-Naggar, A.; Kau, J.; Olson, C.; Tomlinson, D.; Chang, S.X. Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis. Biochar 2024, 6, 21. [Google Scholar] [CrossRef]
- Senadheera, S.S.; Gupta, S.; Kua, H.W.; Hou, D.; Kim, S.; Tsang, D.C.W.; Ok, Y.S. Application of Biochar in Concrete—A Review. Cem. Concr. Compos. 2023, 143, 105204. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, Y.U.; Jeon, J.; Yun, B.Y.; Kang, Y.; Kim, S. Analysis of Biochar-Mortar Composite as a Humidity Control Material to Improve the Building Energy and Hygrothermal Performance. Sci. Total Environ. 2021, 775, 145552. [Google Scholar] [CrossRef]
- Ahmad, S.; Tulliani, J.-M.; Ferro, G.; Khushnood, R.; Restuccia, L.; Jagdale, P. Crack Path and Fracture Surface Modifications in Cement Composites. Frat. Ed Integrita Strutturale 2015, 9, 524–533. [Google Scholar] [CrossRef]
- Shafie, T.S.; Salleh, A.; Lau, L.H.; Rahman, M.; Ghani, W. Effect of Pyrolysis Temperature on the Biochar Nutrient and Water Retention Capacity. J. Purity Util. React. Environ. 2012, 1, 293–307. [Google Scholar]
- Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Berti, D.; Biscontin, G.; Lau, J. Effect of Biochar Filler on the Hydration Products and Microstructure in Portland Cement–Stabilized Peat. J. Mater. Civ. Eng. 2021, 33, 04021263. [Google Scholar] [CrossRef]
- Gupta, S.; Muthukrishnan, S.; Kua, H.W. Comparing Influence of Inert Biochar and Silica Rich Biochar on Cement Mortar—Hydration Kinetics and Durability under Chloride and Sulfate Environment. Constr. Build. Mater. 2021, 268, 121142. [Google Scholar] [CrossRef]
- Patel, R.; Babaei-Ghazvini, A.; Dunlop, M.J.; Acharya, B. Biomaterials-Based Concrete Composites: A Review on Biochar, Cellulose and Lignin. Carbon Capture Sci. Technol. 2024, 12, 100232. [Google Scholar] [CrossRef]
- Yang, X.; Lin, R.-S.; Han, Y.; Wang, X.-Y. Behavior of Biochar-Modified Cementitious Composites Exposed to High Temperatures. Materials 2021, 14, 5414. [Google Scholar] [CrossRef]
- Castellote, M.; Alonso, C.; Andrade, C.; Turrillas, X.; Campo, J. Composition and Microstructural Changes of Cement Pastes Upon Heating, as Studied by Neutron Diffraction. Cem. Concr. Res. 2004, 34, 1633–1644. [Google Scholar] [CrossRef]
- Song, H.; Jeong, Y.; Jun, Y.; Yoon, S.; Oh, J.E. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG. Constr. Build. Mater. 2018, 169, 648–661. [Google Scholar] [CrossRef]
- Ševčík, R.; Pérez-Estébanez, M.; Viani, A.; Šašek, P.; Mácová, P. Characterization of Vaterite Synthesized at Various Temperatures and Stirring Velocities without Use of Additives. Powder Technol. 2015, 284, 265–271. [Google Scholar] [CrossRef]
- Ševčík, R.; Mácová, P.; Estébanez, M.P.; Viani, A. Influence of Additions of Synthetic Anhydrous Calcium Carbonate Polymorphs on Nanolime Carbonation. Constr. Build. Mater. 2019, 228, 116802. [Google Scholar] [CrossRef]
- Zhang, D.; Ghouleh, Z.; Shao, Y. Review on Carbonation Curing of Cement-Based Materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Cuesta, A.; Morales-Cantero, A.; De la Torre, A.G.; Aranda, M.A.G. Recent Advances in C-S-H Nucleation Seeding for Improving Cement Performances. Materials 2023, 16, 1462. [Google Scholar] [CrossRef]
- John, E.; Matschei, T.; Stephan, D. Nucleation Seeding with Calcium Silicate Hydrate—A Review. Cem. Concr. Res. 2018, 113, 74–85. [Google Scholar] [CrossRef]
Oxide Composition | (wt.%) |
---|---|
SiO2 | 19.64 |
Al2O3 | 4.77 |
Fe2O3 | 2.45 |
CaO | 63.79 |
MgO | 2.04 |
K2O | 0.76 |
Na2O | 0.11 |
SO3 | 2.93 |
Cl− | 0.09 |
Clinker mineral | (wt.%) |
C3S | 68.2 |
C2S | 6.7 |
C3A | 7.9 |
C4AF | 7.2 |
Raw Material | Specific Density (kg·m−3) | Powder Density (kg·m−3) | Specific Surface Area (m2·kg−1) | Loss on Ignition (%) |
---|---|---|---|---|
PC I | 3 102 | 975 | 362 | 3.98 |
WB | 1 525 | 302 | 891 | N/A |
Specimen | PC I (g) | WB (g) | Water (g) | Flow Value (mm) |
---|---|---|---|---|
P-R | 1000 | 0 | 300 | 170 × 170 |
P-WB 0.5 | 995 | 5 | 300 | 160 × 160 |
P-WB 1.0 | 990 | 10 | 300 | 155 × 160 |
P-WB 1.5 | 985 | 15 | 300 | 155 × 155 |
P-WB 2.0 | 980 | 20 | 300 | 140 × 145 |
Specimen | Bulk Density (kg·m−3) | Open Porosity (%) | Bulk Density (kg·m−3) | Open Porosity (%) |
---|---|---|---|---|
7-Days | 28-Days | |||
P-R | 1736.1 | 36.7 | 1747.0 | 35.1 |
P-WB 0.5 | 1744.1 | 35.9 | 1772.6 | 34.1 |
P-WB 1.0 | 1742.7 | 36.0 | 1762.4 | 33.3 |
P-WB 1.5 | 1727.3 | 36.3 | 1754.1 | 33.9 |
P-WB 2.0 | 1724.2 | 36.3 | 1738.4 | 34.6 |
Specimen | Flexural Strength (MPa) | p-Value (pcritical = 0.05) | Flexural Strength (MPa) | p-Value (pcritical = 0.05) |
---|---|---|---|---|
7-Days | 28-Days | |||
P-R | 10.5 (0.6) | - | 12.9 (0.4) | - |
P-WB 0.5 | 10.1 (0.4) | 0.017 | 12.1 (0.7) | 0.006 |
P-WB 1.0 | 11.3 (0.4) | 0.048 | 13.1 (0.5) | 0.018 |
P-WB 1.5 | 12.2 (0.7) | 0.006 | 13.4 (0.6) | 0.041 |
P-WB 2.0 | 12.8 (0.3) | 0.012 | 14.3 (0.3) | 0.008 |
Specimen | Compressive Strength (MPa) | p-Value (pcritical = 0.05) | Compressive Strength (MPa) | p-Value (pcritical = 0.05) |
---|---|---|---|---|
7-Days | 28-Days | |||
P-R | 62.2 (1.5) | - | 82.5 (4.0) | - |
P-WB 0.5 | 64.6 (0.8) | 0.012 | 88.9 (2.6) | 0.035 |
P-WB 1.0 | 66.2 (2.6) | 0.019 | 92.4 (3.2) | 0.026 |
P-WB 1.5 | 66.6 (2.0) | 0.048 | 90.9 (3.5) | 0.016 |
P-WB 2.0 | 68.9 (1.9) | 0.021 | 94.1 (2.9) | 0.042 |
Specimen | Absorption Coefficient (kg·m−2·s−1/2) | Standard Deviation | Absorption Coefficient (kg·m−2·s−1/2) | Standard Deviation |
---|---|---|---|---|
7-Days | 28-Days | |||
P-R | 0.0121 | 0.0005 | 0.0113 | 0.0008 |
P-WB 0.5 | 0.0100 | 0.0008 | 0.0086 | 0.0004 |
P-WB 1.0 | 0.0088 | 0.0004 | 0.0069 | 0.0005 |
P-WB 1.5 | 0.0092 | 0.0006 | 0.0082 | 0.0004 |
P-WB 2.0 | 0.0109 | 0.0003 | 0.0091 | 0.0006 |
Specimen | Normalized Heat Evolution (J·g−1) | Time to Peak (h) | ||
---|---|---|---|---|
1 h | 1 Day | 3-Days | ||
P-R | 10.9 | 141.4 | 190.4 | 9.02 |
P-WB 0.5 | 12.9 | 139.6 | 191.2 | 8.82 |
P-WB 1.0 | 14.4 | 140.1 | 194.1 | 8.73 |
P-WB 1.5 | 15.9 | 142.9 | 194.9 | 8.69 |
P-WB 2.0 | 16.7 | 143.0 | 198.4 | 8.64 |
Specimen | Weight Loss (wt.%) | ||
---|---|---|---|
C-S-H Decomposition | Portlandite Decomposition | Calcite Decomposition | |
P-R | 9.79 | 3.57 | 4.27 |
P-WB 2.0 | 12.48 | 3.94 | 5.24 |
Mineral | P-R | P-WB 2.0 |
---|---|---|
Content in wt.% | ||
Quartz | 0.4 (3) | 0.4 (3) |
Vaterite | 6.5 (3) | 7.0 (3) |
Aragonite | 14.3 (3) | 15.5 (3) |
Brownmillerite | 2.7 (2) | 2.6 (2) |
Calcite | 6.7 (3) | 6.7 (2) |
Alite | 8.3 (2) | 7.7 (2) |
Belite | 4.2 (4) | 3.7 (3) |
Portlandite | 5.9 (2) | 6.2 (2) |
Ettringite | 2.8 (3) | 2.2 (3) |
Amorphous | 47.0 (9) | 47.5 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorný, J.; Ševčík, R.; Zárybnická, L.; Šál, J.; Podolka, L. Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties. Buildings 2025, 15, 1949. https://doi.org/10.3390/buildings15111949
Pokorný J, Ševčík R, Zárybnická L, Šál J, Podolka L. Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties. Buildings. 2025; 15(11):1949. https://doi.org/10.3390/buildings15111949
Chicago/Turabian StylePokorný, Jaroslav, Radek Ševčík, Lucie Zárybnická, Jiří Šál, and Luboš Podolka. 2025. "Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties" Buildings 15, no. 11: 1949. https://doi.org/10.3390/buildings15111949
APA StylePokorný, J., Ševčík, R., Zárybnická, L., Šál, J., & Podolka, L. (2025). Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties. Buildings, 15(11), 1949. https://doi.org/10.3390/buildings15111949