A Comparative Study of the Fire Properties of Chinese Traditional Timber Structural Components under Different Surface Treatments
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Making
2.1.1. Choice of Wood Type and Specimen Size
2.1.2. Choice of Surface Treatments
2.2. Single-Sided Fire Test
3. Results
3.1. Visual Observation
3.2. Charring Characteristics
3.3. Surface Temperature Variations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.J.; Park, S. Tectonic traditions in ancient Chinese architecture, and their development. J. Asian Archit. Build. Eng. 2017, 16, 31–38. [Google Scholar] [CrossRef]
- Fang, D.P.; Iwasaki, S.; Yu, M.H.; Shen, Q.P.; Miyamoto, Y.; Hikosaka, H. Ancient Chinese timber architecture I: Experimental study. J. Struct. Eng. 2001, 127, 1348–1357. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, H.; Jiang, X.; Lu, Y.; Wang, W.; Yin, Y. Wood used in ancient timber architecture in Shanxi Province, China. IAWA J. 2017, 38, 182–200. [Google Scholar] [CrossRef]
- Zhang, X.C.; Xue, J.Y.; Zhao, H.T.; Sui, Y. Experimental study on Chinese ancient timber-frame building by shaking table test. Struct. Eng. Mech. 2011, 40, 453–469. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Mei, X.J. Fire Protection in Ancient Buildings; Chemical Industry Press: Beijing, China, 2010. [Google Scholar]
- Wang, Y.; Wang, W.; Zhou, H.; Qi, F. Burning Characteristics of Ancient Wood from Traditional Buildings in Shanxi Province, China. Forests 2022, 13, 190. [Google Scholar] [CrossRef]
- Yang, L.; Ran, Y.; Liu, T. Fire Risk Analysis of Wooden Ancient Buildings. Eng. Constr. 2016, 48, 91–94. [Google Scholar]
- Fu, P.; Teri, G.L.; Li, J.; Li, J.X.; Li, Y.H.; Yang, H. Investigation of ancient architectural painting from the Taidong tomb in the western qing tombs, hebei, china. Coatings 2020, 10, 688. [Google Scholar] [CrossRef]
- Li, J.; Zhao, R. A Multi-Method Analysis of a Color Painting on Ancient Architecture from Anyuan Temple in Chengde, China. Coatings 2024, 14, 559. [Google Scholar] [CrossRef]
- Xu, Q.F.; Han, C.Q.; Chen, L.Z.; Wang, Z.C.; Leng, Y.B. Experimental study of the mechanical properties of traditional ground battle protection roundwood posts after fire. China Civ. Eng. J. 2019, 52, 90–99. [Google Scholar]
- Xu, Q.F.; Han, C.Q.; Chen, L.Z.; Wang, Z.C.; Leng, Y.B. Experimental study of the mechanical properties of traditional ground warfare treated wooden beams after fire on three sides. Build. Struct. 2021, 51, 92–97+29. [Google Scholar]
- Mali, P.; Sonawane, N.S.; Patil, V.; Lokhande, G.; Mawale, R.; Pawar, N. Morphology of wood degradation and flame retardants wood coating technology: An overview. Int. Wood Prod. J. 2022, 13, 21–40. [Google Scholar] [CrossRef]
- Jiang, J.; Li, J.; Gao, Q. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Constr. Build. Mater. 2015, 75, 74–81. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Xu, M.; Liu, L.; Wang, W.; Gao, S.; Li, B. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood. Polym. Adv. Technol. 2021, 32, 4805–4814. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, L.; Liu, S.; Zhang, C.; Xiang, T. The traditional wisdom in fire prevention embodied in the layout of ancient villages: A case study of high chair village in Western Hunan, China. Buildings 2022, 12, 1885. [Google Scholar] [CrossRef]
- Dong, L.L.; Lu, Y.H.; Chen, G. The Modern Green Technology Innovation of Bayu Traditional Wooden Building. Adv. Mater. Res. 2015, 1065, 1610–1617. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, X.; Li, Y.; Leonidas, E.; Fisk, C.; Yang, J.; Zhang, Y.; Willmott, J. Investigating the fire-retardant efficiency of intumescent coatings on inclined timber: A study on application strategies and heat transfer mechanisms. Constr. Build. Mater. 2023, 407, 133586. [Google Scholar] [CrossRef]
- Liang, C.; Du, Y.; Wang, Y.; Ma, A.; Huang, S.; Ma, Z. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2021, 4, 979–988. [Google Scholar] [CrossRef]
- Jiang, H.C.; Li, K.; Ma, Y.; Ma, X.M.; Hu, Z.Y. Combustion performance study of phosphorus-nitrogen-boron composite flame-retardant rubber wood. Chin. J. Trop. Crop 2020, 41, 787–792. [Google Scholar]
- Zhang, J.; Xu, Q.F.; Shang, J.X. Residual bearing capacity tests of wooden columns after fire on one side and two adjacent sides. J. Shenyang Univ. Technol. 2013, 35, 461–468. [Google Scholar]
- Zang, X.; Liu, W.; Wu, D.; Pan, X.; Zhang, W.; Bian, H.; Shen, R. Contemporary fire safety engineering in timber structures: Challenges and solutions. Fire 2023, 7, 2. [Google Scholar] [CrossRef]
- Garcia-Castillo, E.; Paya-Zaforteza, I.; Hospitaler, A. Fire in heritage and historic buildings, a major challenge for the 21st century. Dev. Built Environ. 2023, 13, 100102. [Google Scholar] [CrossRef]
- Mohammadiounotikandi, A.; Fakhruldeen, H.F.; Meqdad, M.N.; Ibrahim, N.; Jafari, B.F.; Navimipour, N.; Unal, M. A fire evacuation and control system in smart buildings based on the internet of things and a hybrid intelligent algorithm. Fire 2023, 6, 171. [Google Scholar] [CrossRef]
- Yun, W.C.; Ji, Q.; Tan, L.W. Flame retardant properties of magnesium oxide nanoparticles on wood. Appl. Chem. Ind. 2015, 44, 1057–1060. [Google Scholar]
- Yuan, C.; Zhai, S.C.; Zhang, Y.M.; Zhang, Y.L. Analysis of archaeological wood degradation by infrared spectroscopy combined with thermogravimetry. Spectrosc. Spect. Anal. 2020, 40, 2943–2950. [Google Scholar]
- Yuan, C.Y.; Lang, Y.J.; Wang, K.; Liu, X.; Wang, Q.L. Analysis on the fire spread law of brick-wood structured ancient buildings under different flow velocity. Fire Sci. Technol. 2021, 40, 643. [Google Scholar]
- Deng, C.; Liu, Y.; Jian, H.; Liang, Y.; Wen, M.; Shi, J.; Park, H. Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr. Build. Mater. 2023, 374, 130939. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, J.; Shen, Z.; Bi, H.; Shentu, B. Flame resistance and bonding performance of plywood fabricated by guanidine phosphate-impregnated veneers. Forests 2023, 14, 741. [Google Scholar] [CrossRef]
- Deng, C.; Ji, Y.; Zhu, M.; Liang, Y.; Jian, H.; Yan, Z.; Wen, M.; Park, H. Preparation of organic-inorganic phosphorus-nitrogen-based flame retardants and their application to plywood. Polymers 2023, 15, 3112. [Google Scholar] [CrossRef]
- Schnabl, S.; Turk, G.; Planinc, I. Buckling of timber columns exposed to fire. Fire Saf. J. 2011, 46, 431–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Yang, L. Influence of Fire-Retardant Coatings on the Hygroscopic Properties of Wood. J. Wood Sci. 2021, 67, 345–353. [Google Scholar]
- Chen, L.; Ye, X.; Zhou, M. Study on the Hygroscopicity of Fire-Retardant Treated Wood. Int. J. Fire Sci. Technol. 2018, 35, 289–299. [Google Scholar]
- Gao, B.; Wei, S.; Du, W.; Yang, H.; Chu, Y. Experimental Study on the Fire Resistance Performance of Partition Board under the Condition of Small Fire Source. Processes 2021, 9, 1818. [Google Scholar] [CrossRef]
- Lee, W.M.; Fragomeni, S.; Monckton, H.; Guerrieri, M. A review of test Methods, issues and challenges of Large-Scale fire testing of concrete tunnel linings. Constr. Build. Mater. 2023, 392, 131901. [Google Scholar] [CrossRef]
Wood Species | Stage | RGB Value | ||
---|---|---|---|---|
R | G | B | ||
Pine | Before | 164 | 157 | 151 |
After | 145 | 135 | 124 | |
Poplar | Before | 157 | 151 | 137 |
After | 172 | 163 | 137 |
Wood Species | Dimension | Types of Surface Treatment | Specimen Numbering |
---|---|---|---|
Pine | ∅100 × 400 mm | No treatment (control) | Pi-N-1 |
Pi-N-2 | |||
Pi-N-3 | |||
Modern | Pi-R-1 | ||
Pi-R-2 | |||
Pi-R-3 | |||
Traditional | Pi-T-1 | ||
Pi-T-2 | |||
Pi-T-3 | |||
Combined | Pi-RT-1 | ||
Pi-RT-2 | |||
Pi-RT-3 | |||
Poplar | ∅100 × 400 mm | No treatment (control) | Po-N-1 |
Po-N-2 | |||
Po-N-3 | |||
Modern | Po-R-1 | ||
Po-R-2 | |||
Po-R-3 | |||
Traditional | Po-T-1 | ||
Po-T-2 | |||
Po-T-3 | |||
Combined | Po-RT-1 | ||
Po-RT-2 | |||
Po-RT-3 |
Wood Species | Individual MC without Treatment | Average MC without Treatment | Treatment Type | Individual MC after Treatment | Average MC after Treatment | Average MC Difference after Treatment |
---|---|---|---|---|---|---|
Pine | 12.1% | 10.2% | Modern | 17.2% | 16.9% | +6.7% |
17.1% | ||||||
16.4% | ||||||
8.8% | Traditional | 8.9% | 8.7% | −1.5% | ||
8.5% | ||||||
8.7% | ||||||
9.6% | Combined | 8.8% | 8.7% | −1.5% | ||
8.5% | ||||||
8.7% | ||||||
Poplar | 7.4% | 8.2% | Modern | 15.1% | 14.4% | +6.2% |
13.4% | ||||||
14.8% | ||||||
9.2% | Traditional | 7.6% | 7.0% | −1.2% | ||
5.8% | ||||||
7.6% | ||||||
8.0% | Combined | 7.1% | 7.4% | −0.6% | ||
7.2% | ||||||
7.8% |
Treatment | Time Recorded after Fire Ignition | T | ||||
---|---|---|---|---|---|---|
10 s | 30 s | 60 s | 300 s | 600 s | ||
Pi-N (Control) | 3.6 s | |||||
Pi-R (Modern) | 0.6 s | |||||
Pi-T (Traditional) | 2.3 s | |||||
Pi-RT (Combined) | 4.3 s |
Treatment | Time Recorded after Fire Ignition | T | ||||
---|---|---|---|---|---|---|
10 s | 30 s | 60 s | 300 s | 600 s | ||
Po-N (Control) | 14.0 s | |||||
Po-R (Modern) | 9.1 s | |||||
Po-T (Traditional) | 16.0 s | |||||
Po-RT (Combined) | 27.0 s |
Wood Species | No Treatment | Modern Treatment | Traditional Treatment | Combined Treatment |
---|---|---|---|---|
Pine | ||||
Pi-N-1 | Pi-R-1 | Pi-T-1 | Pi-RT-1 | |
Pi-N-2 | Pi-R-2 | Pi-T-2 | Pi-RT-2 | |
Pi-N-3 | Pi-R-3 | Pi-T-3 | Pi-RT-3 | |
Poplar | ||||
Po-N-1 | Po-R-1 | Po-T-1 | Po-RT-1 | |
Po-N-2 | Po-R-2 | Po-T-2 | Po-RT-2 | |
Po-N-3 | Po-R-3 | Po-T-3 | Po-RT-3 |
Specimen Number | Average MC after Treatment (%) | Burning Duration (min) | Charring Depth (mm) | Charring Rate (mm/min) | Mass Before Test (m0) (g) | Mass after Test (m1) (g) | Mass Loss (∆m) (g) |
---|---|---|---|---|---|---|---|
Pi-N-1 | 5 | 16.0 | 3.2 | 1015.2 | 992.8 | 22.4 | |
Pi-N-2 | 10.2 | 5 | 10.5 | 2.1 | 1116.4 | 1106.3 | 10.1 |
Pi-N-3 | 10 | 22.0 | 2.2 | 1126.7 | 1073.3 | 53.4 | |
Pi-R-1 | 5 | 10.0 | 2.0 | 870.2 | 864.8 | 5.4 | |
Pi-R-2 | 16.9 | 5 | 10.0 | 2.0 | 858.9 | 853.9 | 5.0 |
Pi-R-3 | 10 | 13.0 | 1.3 | 1133.7 | 1119.4 | 14.3 | |
Pi-T-1 | 5 | 2.0 | 0.4 | 1598 | 1590.8 | 7.2 | |
Pi-T-2 | 8.7 | 5 | 3.5 | 0.7 | 1213.6 | 1208.6 | 5.0 |
Pi-T-3 | 10 | 8.0 | 0.8 | 1439.5 | 1429.4 | 10.1 | |
Pi-RT-1 | 5 | 8.5 | 1.7 | 1424.0 | 1410.4 | 13.6 | |
Pi-RT-2 | 8.7 | 5 | 4.5 | 0.9 | 1192.0 | 1187.9 | 4.1 |
Pi-RT-3 | 10 | 8.0 | 0.8 | 1368.5 | 1345.7 | 22.8 | |
Po-N-1 | 5 | 16.0 | 3.2 | 1010.0 | 985.2 | 24.8 | |
Po-N-2 | 8.2 | 5 | 20.0 | 4.0 | 1015.5 | 991.7 | 23.8 |
Po-N-3 | 10 | 30.0 | 3.0 | 1013.3 | 958.7 | 54.6 | |
Po-R-1 | 5 | 13.5 | 2.7 | 1116.1 | 1105.9 | 10.2 | |
Po-R-2 | 14.4 | 5 | 12.0 | 2.4 | 1005.7 | 993.7 | 12.0 |
Po-R-3 | 10 | 20.0 | 2.0 | 1119.0 | 1102.9 | 16.1 | |
Po-T-1 | 5 | 7.0 | 1.4 | 1522.7 | 1506.5 | 16.2 | |
Po-T-2 | 7.0 | 5 | 9.0 | 1.8 | 1306.6 | 1293 | 13.6 |
Po-T-3 | 10 | 10.0 | 1.0 | 1592.6 | 1582.9 | 19.7 | |
Po-RT-1 | 5 | 10.0 | 2.0 | 1376.0 | 1363.1 | 12.9 | |
Po-RT-2 | 7.4 | 5 | 11.0 | 2.2 | 1430.9 | 1419.8 | 11.1 |
Po-RT-3 | 10 | 17.0 | 1.7 | 1372.5 | 1353.2 | 19.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yeo, S.; Dai, S. A Comparative Study of the Fire Properties of Chinese Traditional Timber Structural Components under Different Surface Treatments. Buildings 2024, 14, 2439. https://doi.org/10.3390/buildings14082439
Li Y, Yeo S, Dai S. A Comparative Study of the Fire Properties of Chinese Traditional Timber Structural Components under Different Surface Treatments. Buildings. 2024; 14(8):2439. https://doi.org/10.3390/buildings14082439
Chicago/Turabian StyleLi, Yupeng, Sokyee Yeo, and Shibing Dai. 2024. "A Comparative Study of the Fire Properties of Chinese Traditional Timber Structural Components under Different Surface Treatments" Buildings 14, no. 8: 2439. https://doi.org/10.3390/buildings14082439
APA StyleLi, Y., Yeo, S., & Dai, S. (2024). A Comparative Study of the Fire Properties of Chinese Traditional Timber Structural Components under Different Surface Treatments. Buildings, 14(8), 2439. https://doi.org/10.3390/buildings14082439