Clinker-Free Cement Manufactured with Metallurgical Slags
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Raw Material Characterization
3.2. Cement Chemical Composition and Alkalinity
3.3. Compressive Strength of Cement Mortar Using ECO Formulations
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Global Cement Production in the Net Zero Scenario, 2010–2030, IEA, Paris. IEA. Licence: CC BY 4.0. Available online: https://www.iea.org/data-and-statistics/charts/global-cement-production-in-the-net-zero-scenario-2010-2030-5260 (accessed on 20 January 2024).
- Capmas, A. Concreto e desenvolvimento sustentável. In Durabilidade do Concreto; Geraldo, C.I., Translator; Ibracon: São Paulo, Brazil, 2014; pp. 3–13. [Google Scholar]
- ROADMAP Tecnológico do Cimento: Potencial de Redução das Emissões de Carbono da Indústria do Cimento Brasileira Até 2050; SNIC: Rio de Janeiro, Brazil, 2019; 64p.
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- NBR 16697; Cimento Portland—Requisitos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2018.
- Oliveira, M.D.S. Estudo da Obtenção de Cimento sem Clínquer a Partir de Misturas de Escórias Siderúrgicas. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2021. [Google Scholar]
- EN 15743:2010; Supersulfated Cement—Composition, Specifications and Conformity Criteria. Comité Européen de Normalisation-CEN: Brussels, Belgium, 2010.
- Associação Brasileira de Normas Técnicas. NBR 7215. Cimento Portland—Determinação da Resistência à Compressão; ABNT: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Nonat, A. A Hidratação dos Cimentos; Alba Cincotto, M., Translator; Ibracon: São Paulo, Brazil, 2014. [Google Scholar]
- Baird, C.; Cann, N. Environmental Chemistry, 5th ed.; W.H. Freeman and Company: New York, NY, USA, 2012. [Google Scholar]
- Kaja, A.M.; Melzer, S.; Brouwers, H.J.H.; Yu, Q. On the optimization of BOF slag hydration kinetics. Cem. Concr. Compos. 2021, 124, 104262. [Google Scholar] [CrossRef]
- Zago, S.C.; Vernilli, F.; Cascudo, O. The Reuse of Basic Oxygen Furnace Slag as Concrete Aggregate to Achieve Sustainable Development: Characteristics and Limitations. Buildings 2023, 13, 1193. [Google Scholar] [CrossRef]
- Wu, Q.; Xue, Q.; Ye, Z. Research status of super sulfate cement. J. Clean. Prod. 2021, 294, 126228. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, W.; Li, Y.; Ba, H.; Li, N.; Ju, Y.; Zhao, B.; Jia, G.; Hu, W. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials. J. Build. Eng. 2021, 44, 103289. [Google Scholar] [CrossRef]
Raw Materials | Abbreviation | Classification | Source |
---|---|---|---|
Blast furnace slag | BFS1 | Steelmaking slag | Steelmaking industry |
BFS2 | |||
Basic oxygen furnace slag | BOF1 | Steelmaking slag | Steelmaking industry |
BOF2 | |||
BOF3 | |||
Gypsum waste | GW | Recyclable wWaste | Waste treatment and recycling plant |
Analyses | Raw Materials | Analysis Conditions |
---|---|---|
XRF | BFS, BOF, GW | Lithium tetraborate and lithium metaborate fused pellets/panalytical spectrometer, model Axios |
XRD | BFS, BOF, GW | Rigaku diffractometer, Windmax 1000 model, Cu Kα radiation with 40 KV—20 mA and scan speed of 2°/min |
Cementitious Formulations | Nomenclature | BOF | BFS | BFS [wt%] | GW [wt%] | BOF [wt%] |
---|---|---|---|---|---|---|
ECO1 | ECO1-851510 | BOF 1 | BFS1 | 85 | 15 | 10 |
ECO2 | ECO2-851510 | BOF 2 | BFS1 | 85 | 15 | 10 |
ECO2-802010 | 80 | 20 | 10 | |||
ECO2-802013 | 80 | 20 | 13 | |||
ECO3 | ECO3-851510 | BOF 3 | BFS1 | 85 | 15 | 10 |
ECO3-802010 | 80 | 20 | 10 | |||
ECO3-802015 | 80 | 20 | 15 | |||
ECO3-881213 | 88 | 12 | 13 | |||
ECO4 | ECO4-802010 | BOF 3 | BFS2 | 80 | 20 | 10 |
ECO4-901010 | 90 | 10 | 10 |
Chemical Composition | BOF1 | BOF2 | BOF3 | BFS1 | BFS2 | GW |
---|---|---|---|---|---|---|
SiO2 | 17.60 | 16.58 | 13.13 | 42.43 | 40.13 | 1.47 |
Al2O3 | 3.83 | 4.27 | 2.02 | 15.12 | 11.66 | 0.34 |
Fe2O3 | 29.60 | 27.77 | 32.08 | 0.28 | 0.36 | 0.28 |
CaO | 37.62 | 41.46 | 41.34 | 38.30 | 37.68 | 41.34 |
MgO | 7.28 | 5.82 | 5.20 | 5.19 | 6.52 | 0.66 |
K2O | 0.14 | - | - | 0.35 | 0.31 | 0.07 |
TiO2 | 0.41 | 0.41 | 0.43 | - | - | |
P2O5 | ..... | ...... | 1.86 | - | - | 0.20 |
MnO | 2.87 | 2.88 | 3.31 | 0.58 | 0.32 | |
MgO | - | - | - | - | - | 0.66 |
SO3 | - | - | - | - | - | 37.90 |
LOI | 0.44 | 0.28 | 0.34 | 0.38 | 0.31 | - |
Basicity Index | 2.76 | 3.10 | 3.69 | 1.38 | 1.39 | - |
Molecular Formula | Mineralogical Phase | GW % | BOF1 % | BOF2 % | BOF3 % |
---|---|---|---|---|---|
CaSO4.2H2O | Gypsum | 92.79 | - | - | - |
CaSO4.0.5H2O | Hemihydrate | 3.03 | - | - | - |
CaSO4 | Anhydrite | 0.84 | - | - | - |
CaMg(CO3)2 | Dolomite | 1.4 | - | - | - |
FeO | Wustite | - | 19.9 | 22.8 | 29.7 |
CaCO3 | Calcite | 1.94 | 17.9 | 11.3 | 7.0 |
β-2CaSiO2 | Belite or Larnite | - | 13.0 | 20.7 | 25.1 |
Ca2Fe1.4Mg0.3Si0.3O5 | Brownmillerite (Mg. Si-exchanged) | - | 11.9 | 19.0 | 13.9 |
Fe3O4 | Magnetite | - | 10.9 | 7.1 | 5.8 |
Fe0 | Iron | - | 2.1 | 1.4 | 0.5 |
SiO2 | Quartz | - | 0.9 | 1.4 | 0.2 |
Na4(Si8Al4O24)·11H2O | Gmelinite-Na | - | 0.3 | 0.2 | 0.2 |
Ca3Al2(OH)12 | Katoite | - | 0.3 | 2.2 | 0.7 |
Ca(OH)2 | Portlandite | - | 0.2 | 3.8 | 7.0 |
Amorphous Phase | - | 22.6 | 10.1 | 9.9 |
Chemical Composition | ECO1 | ECO2 | ECO3 | ECO4 | |||||
---|---|---|---|---|---|---|---|---|---|
851510 | 802010 | 802013 | 851510 | 802010 | 802015 | 881213 | 802010 | 901013 | |
SiO2 | 34.59 | 32.63 | 32.21 | 34.29 | 32.32 | 31.49 | 34.71 | 30.65 | 33.6 |
Al2O3 | 12.08 | 11.45 | 11.26 | 12.12 | 11.24 | 10.84 | 12.05 | 8.73 | 9.55 |
Fe2O3 | 2.95 | 2.78 | 3.44 | 2.78 | 3.17 | 4.43 | 3.94 | 3.23 | 4.0 |
CaO | 38.65 | 39.14 | 39.2 | 39 | 39.13 | 39.23 | 38.98 | 38.68 | 38.43 |
MgO | 4.76 | 4.42 | 4.46 | 4.63 | 4.37 | 4.4 | 4.71 | 5.33 | 5.85 |
K2O | 0.28 | 0.27 | 0.26 | 0.28 | 0.27 | 0.26 | 0.28 | 0.24 | 0.25 |
Na2O | - | 0.01 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - |
SO3 | 5.17 | 6.89 | 6.71 | 5.17 | 6.83 | 6.59 | 4.02 | 6.89 | 3.35 |
MnO | 0.71 | 0.68 | 0.74 | 0.71 | 0.72 | 0.84 | 0.88 | 0.53 | 0.64 |
Alkalinity | 12.3 | 12.2 | 12.6 | 12.3 | 12.3 | 13.1 | 12.7 | 12.3 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarco, M.; Vernilli, F.; Zago, S.C. Clinker-Free Cement Manufactured with Metallurgical Slags. Buildings 2024, 14, 1739. https://doi.org/10.3390/buildings14061739
Demarco M, Vernilli F, Zago SC. Clinker-Free Cement Manufactured with Metallurgical Slags. Buildings. 2024; 14(6):1739. https://doi.org/10.3390/buildings14061739
Chicago/Turabian StyleDemarco, Marcel, Fernando Vernilli, and Sara Carvalho Zago. 2024. "Clinker-Free Cement Manufactured with Metallurgical Slags" Buildings 14, no. 6: 1739. https://doi.org/10.3390/buildings14061739
APA StyleDemarco, M., Vernilli, F., & Zago, S. C. (2024). Clinker-Free Cement Manufactured with Metallurgical Slags. Buildings, 14(6), 1739. https://doi.org/10.3390/buildings14061739