Non-Cement Building Materials from Volcanic Rock Extraction Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mixing and Sample Preparation
2.3. Methods
2.3.1. Physical Characterizations
2.3.2. Mechanical Characterization
2.3.3. X-ray Diffraction
2.3.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Density
3.2. Water Absorption
3.3. Compressive Strength
3.4. X-ray Diffraction
3.5. SEM Analysis
- ✓
- Densities of non-cemented artificial stone materials made with tuff wastes of Artik mine increased from 37% up to 39% compared to the density of natural stones, in the case of Ani tuff wastes from 16% up to 18%, and in the case of Agarak tuff wastes from 10.5% up to 12%. In other words, non-cement artificial stone materials with a denser structure were obtained.
- ✓
- The water absorption data of non-cement artificial stone materials made with tuff waste from Artik, Ani, and Agarak mines have decreased by 2 to 2.5 times, which means that compared to natural stone materials, artificial stones a lower amount of water due to the resulting dense structure and therefore they can be used as facing materials.
- ✓
- The compressive strength data of non-cemented artificial stone materials, compared to the compressive strength data of natural stones, increased from 22% up to 27% in the case of tuff deposits of Artik, from 25% up to 30% in the case of Ani, and from 15% up to 20% in the case of Agarak deposits.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehta, P.K. Reducing the environmental impact of concrete. Concr. Int. 2002, 10, 61–66. Available online: http://ecosmartconcrete.com/docs/trmehta02.pdf (accessed on 24 July 2002).
- Alex, A.G.; Jose, P.A.; Saberian, M.; Li, J. Green Pervious Concrete Containing Diatomaceous Earth as Supplementary Cementitous Materials for Pavement Applications. Materials 2023, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.; Ramroth, H.; Urban, T.; Ahrens, W.; Becher, H. Exposure to cement dust, related occupational groups, and laryngeal cancer risk: Results of a population-based case-control study. Int. J. Cancer 2004, 108, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Al-Neaimi, Y.I.; Gomes, J.; Lloyd, O.L. Respiratory illnesses and ventilatory function among workers at a cement Factory in a rapidly developing country. Occup. Med. 2001, 51, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Gehlot, M.R.; Shrivastava, S. Utilization of stone waste in the development of sustainable mortar: A state of the art review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Kurdowski, W. New Concretes. (Chapter). In Cement and Concrete Chemistry; Springer Science & Business: Berlin/Heidelberg, Germany, 2014; pp. 369–532. [Google Scholar] [CrossRef]
- Hendriks, C.A.; Worrell, E.; De Jager, D.; Blok, K.; Riemer, P. Emission reduction of greenhouse gases from the cement industry. In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 30 August–2 September 1998; pp. 939–944. Available online: http://geomimicry.net/files/sustainability%20documents/EmissionReductionofGreenhouseGasesfromtheCementIndustry.pdf (accessed on 4 May 2024).
- Imbabi, M.; Carriran, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- Arzumanyan, A.; Tadevosyan, V.; Muradyan, N.; Navasardyan, H. Study of “Saralsk” Deposit for Practical Applications in Construction. J. Archit. Eng. Res. 2021, 1, 3–6. [Google Scholar] [CrossRef]
- Muradyan, N.G. Determination of technological characteristics of cementless stone production from the waste of volcanic rock extraction. NUACA Bull. 2020, 2, 92–108. [Google Scholar]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic Ash as a Sustainable Binder Material: An Extensive Review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef]
- Gum, S.R.; Young, B.L.; Kyung, T.K.; Young, S.C. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Capasso, I.; D’Angelo, G.; Fumo, M.; del Rio Merino, M.; Caputo, D.; Liguori, B. Valorisation of Tuff and Brick Wastes by Alkali Activation for Historical Building Remediation. Materials 2023, 16, 6619. [Google Scholar] [CrossRef] [PubMed]
- Cobîrzan, N.; Thalmaier, G.; Balog, A.A.; Constantinescu, H.; Ceclan, A.; Nasui, M. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks. Materials 2021, 14, 6872. [Google Scholar] [CrossRef] [PubMed]
- Badalyan, M.M.; Chobanyan, D.A.; Sardaryan, M. Mining waste is a valuable raw material for the production of silicate materials. Bull. Build. Armen. 2005, 3, 40. [Google Scholar]
- Sahakyan, E.; Arzumanyan, A.; Muradyan, N. Physical and chemical processes of volcanic rock hardening with alkaline silicates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 698, 022078. [Google Scholar] [CrossRef]
- Badalyan, M.; Karapetyan, A.; Muradyan, N.; Ratevosyan, S. Possibility of Tuff Waste Application in the production of Thermal Insulation Materials. J. Archit. Eng. Res. 2021, 1, 7–12. [Google Scholar] [CrossRef]
- Cheng, B.; Xiaowei, G.; Haoyue, H.; Kong, Y.; Huang, P. The Mechanical Properties and Mechanisms in Contact-Hardening Behavior of Silica-Alumina Mine Solid Waste. Buildings 2024, 14, 922. [Google Scholar] [CrossRef]
- Badalyan, M.; Muradyan, N.; Shainova, R.; Arzumanyan, A.; Kalantaryan, M.; Sukiasyan, R.; Yeranosyan, M.; Laroze, D.; Vardanyan, Y.; Barseghyan, M. Effect of Silica Fume Concentrarion and Water-Cement Ratio on the Compressive Strength of Cement-based Mortars. Buildings 2024, 14, 757. [Google Scholar] [CrossRef]
- Muradyan, N.; Arzumanyan, A.; Kalantaryan, M.; Vardanyan, Y.; Yeranosyan, M.; Ulewicz, M.; Laroze, D.; Barseghyan, M. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516. [Google Scholar] [CrossRef] [PubMed]
- Arzumanyan, A.A.; Gevorgyan, H.; Arzumanyan, A.; Muradyan, N.G. Investigation of the Heat Resistance of Volcanogenic Tuffs of Armenia for Assessment of their Suitability as Fillers for Refractory Lightweight Concretes. NUACA Bull. 2018, 4, 31–40. [Google Scholar]
- Arzumanyan, A.; Arzumanyan, A.; Muradyan, N. Heat-Acid-Resistant Light Concretes on the Base of Volcanic Tuff Lava and Pumise Aggregates of Armenia, Submitting to “Materials science Forum” “Construction and Architecture: Theory and Practice of the industrial development”. Key Eng. Mater. 2019, 828, 141–145. [Google Scholar] [CrossRef]
- Wang, X.; Wenhua, Z.; Yunsheng, Z.; Hongxia, Q.; Cuizhen, X.; Mubita, M.; Baofeng, A. Research on the green preparation of manufactured sand by tuff produced in Gansu China and its influence on the properties of concrete. Constr. Build. Mater. 2023, 409, 133794. [Google Scholar] [CrossRef]
- GOST 8269.1-97; Crushed Stone and Gravel from Dense Rocks and Industrial Waste for Construction Work. Chemical Analysis Methods. RussianGost: Moscow, Russia, 1998. Available online: https://www.russiangost.com/p-19914-gost-82691-97.aspx (accessed on 1 July 1998).
- GOST 12730.3-2020; CONCRETE Method for Determining Water Absorption. RussianGost: Moscow, Russia, 2021. Available online: https://www.expertnk.ru/en/library/?code=342 (accessed on 1 September 2021).
- BS EN 1936:2006; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. BSI: London, UK, 2007. Available online: https://www.scribd.com/document/425684492/BS-EN-1936-2006-pdf (accessed on 31 January 2007).
- GOST 8736-2014; Sand for Construction Works. Specifications. RussianGost: Moscow, Russia, 2015. Available online: https://docs.cntd.ru/document/1200114239 (accessed on 1 April 2015).
- EN 196-6:2018; Methods of Testing Cement—Part 6: Determination of Fineness. BSI: London, UK, 2018. Available online: https://www.en-standard.eu/bs-en-196-6-2018 (accessed on 14 January 2019).
- Overview of the Silicate Block and Liquid Glass Market in the CIS. Moscow. 2017, 164p. Available online: https://www.infomine.ru/research/27/176 (accessed on 19 May 2022).
- Matinfar, M.; Nychka, J.A. A review of sodium silicate solutions: Structure, gelation, and syneresis. Adv. Colloid Interface Sci. 2023, 322, 103036. [Google Scholar] [CrossRef]
- Korneev, V.I.; Danilov, V.V. Soluble and liquid glass. SPb Stroyizdat. 1996, p. 216. Available online: http://booksshare.net/index.php?id1=4&category=chem&author=korneev-vi&book=1996 (accessed on 9 December 2012).
- Vinai, R.; Soutsos, M. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 2019, 116, 45–56. [Google Scholar] [CrossRef]
- Arzumanyan, A.; Muradyan, N. Development of composite binders based on volcanic tuff waste. Int. J. Appl. Sci. Eng. 2023, 21, 2022347. [Google Scholar] [CrossRef]
- AST 100-94; Building Stones from Tuff, Basalt and Travertine: Specifications. Armstandard: Yrevan, Armenia, 1995.
- BS EN 1926:2006; Natural Stone Test Methods. Determination of Uniaxial Compressive Strength. BSI: London, UK, 2006.
- Ponomar, V.; Luukkonen, T.; Yliniemi, J. Revisiting alkali-activated and sodium silicate-based materials in the early works of Glukhovsky. Constr. Build. Mater. 2023, 398, 132474. [Google Scholar] [CrossRef]
- Qingwei, Z.; Gao, P.; Li, K.; Dong, G.; Jin, G.; Sun, X.; Zhao, J.; Chen, L. Experimental Research on the Properties and Formulation of Fly Ash Based Geopolymer Grouting Material. Buildings 2022, 12, 503. [Google Scholar] [CrossRef]
- Sahakyan, E.R.; Arzumanyan, A.A.; Muradyan, N.G. Inorganic Polymeric Materials Based on Natural Silicate and Aluminosilicate Raw Materials. Key Eng. Mater. 2022, 906, 1–6. [Google Scholar] [CrossRef]
- Nikolova, A.; Rostovskya, I.; Nugteren, H. Geopolymer materials based on natural zeolite. Case Stud. Constr. Mater. 2017, 6, 198–205. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, T.; Deng, Y.; Han, Y.; Zhang, T.; Hou, P.; Zhang, G. Microstructure and mechanical performance of alkali-activated tuff-based binders. Cem. Concr. Compos. 2023, 139, 105030. [Google Scholar] [CrossRef]
- Liu, S.; Fang, P.; Wang, H.; Kong, Y.; Ouyang, L. Effect of tuff powder on the hydration properties of composite cementitious materials. Powder Technol. 2021, 380, 59–66. [Google Scholar] [CrossRef]
- Chen, Y.; Xiuqi, W.; Weisong, Y.; Tang, S.; Yan, G. Effects of Waste Glass Powder on Rheological and Mechanical Properties of Calcium Carbide Residue Alkali-Activated Composite Cementitious Materials System. Materials 2023, 16, 3590. [Google Scholar] [CrossRef] [PubMed]
- Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
Name of Rocks | Chemical Composition (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | K2O + Na2O | SO3 | L.i․ | |
Artik tuff | 60.59 | 1.79 | 15.53 | 6.01 | 1.62 | 2.95 | 9.68 | - | 1.83 |
Ani tuff | 70.21 | 0.28 | 16.06 | 2.16 | 0.68 | 2.00 | 5.98 | 0.46 | 2.17 |
Agarak tuff | 64.11 | 2.06 | 15.03 | 6.31 | 2.13 | 4.21 | 2.43 | 1.75 | 1.97 |
Name of Rocks | Real Density, g/cm3 | Average Density, g/cm3 | Porosity, % | Water Absorption by Mass, % | Radioactivity, Bq/m3 | Compressive Strength, MPa |
---|---|---|---|---|---|---|
Artik tuff | 2.49 | 1.39 | 47.3 | 27.4 | 42 ± 4 | 18.2 |
Ani tuff | 2.37 | 1.57 | 44.2 | 21.8 | 45 ± 4 | 19.8 |
Agarak tuff | 2.54 | 1.76 | 34.5 | 16.7 | 43 ± 4 | 24.8 |
Name of Rocks | Sieve Residues, % | Size Modulus, Mк | Specific Surface Area (d < 0.16), cm2/g | ||||
---|---|---|---|---|---|---|---|
2.5 | 1.25 | 0.63 | 0.315 | 0.16 | |||
Artik tuff | 15.65 | 34.16 | 54.97 | 77.28 | 96.16 | 2.8 | 2500 |
Ani tuff | 17.34 | 32.16 | 53.46 | 75.52 | 95.68 | 2.7 | 2300 |
Agarak tuff | 18.23 | 38.11 | 58.81 | 79.22 | 95.58 | 2.9 | 2100 |
Material Type | Chemical Composition (wt.%) | Specific Surface Area (d < 0.16), cm2/g | |||||
---|---|---|---|---|---|---|---|
SiO2 | Na2O | Al2O3 | Fe2O3 | CaO | Loss on. Ign. | ||
xSodium silicate | 69.17 | 28.09 | 1.54 | 0.43 | 0.65 | 0.12 | 2800 |
№ | Filler/Composite Binder % Ratio by Mass | Material Consumption of 1 m3 Mixture, kg | Water/Solid Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
The Grain Size of the Filler, mm | Composite Binder | Water | |||||||
2.5 | 1.25 | 0.63 | 0.315 | 0.16 | |||||
Artik tuff | |||||||||
1 | 75/25 | 250 | 250 | 350 | 360 | 215 | 475 | 215 | 0.113 |
2 | 70/30 | 250 | 250 | 300 | 300 | 220 | 565 | 210 | 0.111 |
Anituff | |||||||||
3 | 75/25 | 250 | 270 | 300 | 320 | 210 | 450 | 210 | 0.117 |
4 | 70/30 | 250 | 250 | 300 | 300 | 150 | 535 | 205 | 0.115 |
Agarak tuff | |||||||||
5 | 75/25 | 250 | 275 | 350 | 355 | 225 | 485 | 205 | 0.106 |
6 | 70/30 | 250 | 250 | 300 | 340 | 200 | 575 | 195 | 0.102 |
Name of Rocks | Filler/Composite Binder % Ratio by Mass | Average Density, kg/m3 | Water Absorption by Mass, % | Compression Strength, MPa | |
---|---|---|---|---|---|
Artik tuff | natural | - | 1390 | 27.4 | 18.2 |
artificial | 75/25 | 1914 | 11.3 | 23.4 | |
70/30 | 1935 | 10.1 | 25.5 | ||
Ani tuff | natural | - | 1570 | 21.8 | 19.8 |
artificial | 75/25 | 1827 | 8.5 | 25.6 | |
70/30 | 1846 | 8.1 | 28.7 | ||
Agarak tuff | natural | - | 1765 | 16.8 | 24.8 |
artificial | 75/25 | 1952 | 7.5 | 30.0 | |
70/30 | 1973 | 7.3 | 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arzumanyan, A.; Muradyan, N.; Arzumanyan, A.; Laroze, D.; Barseghyan, M. Non-Cement Building Materials from Volcanic Rock Extraction Waste. Buildings 2024, 14, 1555. https://doi.org/10.3390/buildings14061555
Arzumanyan A, Muradyan N, Arzumanyan A, Laroze D, Barseghyan M. Non-Cement Building Materials from Volcanic Rock Extraction Waste. Buildings. 2024; 14(6):1555. https://doi.org/10.3390/buildings14061555
Chicago/Turabian StyleArzumanyan, Avetik, Nelli Muradyan, Arusyak Arzumanyan, David Laroze, and Manuk Barseghyan. 2024. "Non-Cement Building Materials from Volcanic Rock Extraction Waste" Buildings 14, no. 6: 1555. https://doi.org/10.3390/buildings14061555
APA StyleArzumanyan, A., Muradyan, N., Arzumanyan, A., Laroze, D., & Barseghyan, M. (2024). Non-Cement Building Materials from Volcanic Rock Extraction Waste. Buildings, 14(6), 1555. https://doi.org/10.3390/buildings14061555