Integration of Industry Foundation Classes and Ontology: Data, Applications, Modes, Challenges, and Opportunities
Abstract
:1. Introduction
- (1)
- At the level of data and models, what are the existing categories, their distribution, and the dominant types applied in IFCOI?
- (2)
- At the level of applications, how many objective types and phases are covered and what are their specific applicable scenes? And how are they used?
- (3)
- Further, what are the existing modes of IFCOI according to the integrational mechanism and degree and their applicability and feasibility, as well as pros and cons?
- (4)
- What are the challenges and future opportunities of IFCOI?
2. Methodology
3. Data and Model
3.1. IFC Data
3.2. Other Heterogeneous Data
- Source diversity. Data can come from different fields, e.g., construction and the geographic information industry;
- Structural differences. Data can be structured, semi-structured, or unstructured, e.g., tabular data, text, and images;
- Format Diversity. Data can be in different formats and encodings, e.g., XML, SPF, and JPEG;
- Semantic difference. The semantics of the data can vary depending on the source and structure of the data, and it is necessary to mine semantic information in practical applications;
- Usage Diversity. Data can be applied to different domains and for different purposes.
3.3. Ontology Description Language and Development Methods
3.3.1. Ontology Description Language
3.3.2. Ontology Development Methods
3.4. IfcOWL
4. Applications of IFCOI
4.1. Application Objectives
4.1.1. Buildings
HBIM
Prefabricated Buildings
Green Building
Facility Management
4.1.2. Infrastructure
4.2. Application Phases
4.2.1. Design Phase
Compliance Checking
Model Optimization
4.2.2. Preconstruction Phase
Cost Estimation
Preconstruction Planning
4.2.3. Construction Phase
4.2.4. Operation and Maintenance Phase
Defect Detection
Urban Management
4.2.5. Discussion
4.3. Application Framework of IFCOI
- Knowledge representation. Many IFC-incompatible fragmented data are involved in BIM applications. Ontology can represent information in a structured way to facilitate the storage, sharing, and reuse of IFC-related knowledge.
- Semantic enrichment. External data or knowledge can be linked to IFC through ontologies, enabling IFC to acquire more BIM-incompatible semantic information.
- Data interoperability. Ontology can eliminate the information barriers between IFC and other systems with a common representation method and promote the linking and sharing of heterogeneous data at the semantic level.
5. Modes of IFCOI
- Mode 1: Ontology is used for knowledge representation and rule reasoning without changes in IFC.
- Mode 2: Ontology embeds domain information into IFC to obtain semantically rich IFC models.
- Mode 3: Ontology links IFC and other data schema to facilitate interoperability between BIM and other systems.
6. Discussion
6.1. Challenges
6.1.1. Consideration of Data
6.1.2. Consideration of Domain Ontology
6.1.3. Consideration of Integration Process
6.2. Opportunities
6.2.1. Automated Information Extraction and Representation
6.2.2. Ontology Extension and Management to Cover a Broader Scope
6.2.3. Further Semantic Transformation
6.3. Building Lifecycle Management (BLM) Based on IFC and Ontology
7. Conclusions
- (1)
- We first conduct a bibliometric analysis from the perspective of data and models. In order to expand the interoperability of BIM, ontology plays a critical role in integrating IFC data with other data. IFC files can be exported in SPF, XML, and RDF formats, and other unstructured data can be mined through ontology for their semantics and linked to IFC. Researchers can select appropriate ontology description languages and development methods to construct ontologies. In addition, IfcOWL, as a current model of IFCOI, is applied to different scenarios, directly or after extension, yet causes complexity in data mapping. Nevertheless, this can be solved by simplifying IfcOWL and ontologies based on IfcOWL.
- (2)
- We perform a statistical analysis of integration applications across various objectives and phases (design, preconstruction, construction, and O&M) dimensions. Buildings are the primary objective of the research. Nevertheless, IFCOI is also very suitable for infrastructure because of the large amount of spatiotemporal data involved. Drawing from bibliometrics and discussions in Section 4, IFCOI demonstrates a broad spectrum of applications throughout its lifecycle. Among them, it is applied more in the design phase and O&M phase, with good performance in compliance checking, HIBM, and cost estimation. Additionally, we discussed the motivations for the integration and constructed a framework diagram for IFCOI application.
- (3)
- We carry out an in-depth analysis of the roles played by IFC and ontology in IFCOI. Given the different integration purposes, semantics, and structures of data, the modes of IFCOI vary accordingly. Based on this, three modes of IFCOI are summarized (see Section 5). Among them, Mode 1 and Mode 2 perform well in different applications. Mode 3 is mainly utilized for BIM and GIS integration. Unfortunately, the performance of Mode 3 is not entirely satisfactory due to differences in data models and levels of detail. In the future, efforts should continue to be made to seek breakthroughs in this area.
- (4)
- Despite the advantages, IFCOI mainly faces the following challenges: low flexibility and scalability in data, limited coverage of domain ontology, and incomplete automation of the process. To address these challenges, we suggest possible corresponding solutions as references for future research. In addition, IFCOI has the potential for building lifecycle management, so we propose a BLM model based on IFC and ontology, which could significantly contribute to the digitalization, integration, and intelligence of management processes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Solibri Inc. Available online: https://www.solibri.com/ (accessed on 8 March 2024).
- Autodesk Revit, Inc. Available online: https://www.autodesk.com/products/revit/overview (accessed on 8 March 2024).
- Bentley Systems, Inc. Available online: https://www.bentley.com/en/products/ (accessed on 8 March 2024).
- SketchUp. Trimble, Inc. Available online: https://www.sketchup.com (accessed on 8 March 2024).
- Sobhkhiz, S.; Zhou, Y.C.; Lin, J.R.; El-Diraby, T.E. Framing and Evaluating the Best Practices of IFC-Based Automated Rule Checking: A Case Study. Buildings 2021, 11, 456. [Google Scholar] [CrossRef]
- Park, S.I.; Lee, S.H.; Almasi, A.; Song, J.H. Extended IFC-based strong form meshfree collocation analysis of a bridge structure. Autom. Constr. 2020, 119, 103364. [Google Scholar] [CrossRef]
- Ma, Z.L.; Wei, Z.H.; Song, W.; Lou, Z. Application and extension of the IFC standard in construction cost estimating for tendering in China. Autom. Constr. 2011, 20, 196–204. [Google Scholar] [CrossRef]
- Sheik, N.A.; Veelaert, P.; Deruyter, G. Exchanging Progress Information Using IFC-Based BIM for Automated Progress Monitoring. Buildings 2023, 13, 2390. [Google Scholar] [CrossRef]
- Theiler, M.; Smarsly, K. IFC Monitor—An IFC schema extension for modeling structural health monitoring systems. Adv. Eng. Inform. 2018, 37, 54–65. [Google Scholar] [CrossRef]
- Venugopal, M.; Eastman, C.M.; Teizer, J. An ontology-based analysis of the industry foundation class schema for building information model exchanges. Adv. Eng. Inform. 2015, 29, 940–957. [Google Scholar] [CrossRef]
- Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge Engineering: Principles and methods. Data Knowl. Eng. 1998, 25, 161–197. [Google Scholar] [CrossRef]
- Chandrashekar, M.; Nagulapati, R.; Lee, Y. Ontology Mapping Framework with Feature Extraction and Semantic Embeddings. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics Workshop (ICHI-W), New York, NY, USA, 4–7 June 2018. [Google Scholar]
- Gao, W.; Baig, A.Q.; Ali, H.; Sajjad, W.; Farahani, M.R. Margin based ontology sparse vector learning algorithm and applied in biology science. Saudi J. Biol. Sci. 2017, 24, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Sanya, I.O.; Shehab, E.M. A framework for developing engineering design ontologies within the aerospace industry. Int. J. Prod. Res. 2015, 53, 2383–2409. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Top, J.L. The Potato Ontology: Delimitation of the Domain, Modelling Concepts, and Prospects of Performance. Potato Res. 2011, 54, 119–136. [Google Scholar] [CrossRef]
- El-Diraby, T.E. Domain Ontology for Construction Knowledge. J. Constr. Eng. Manag. 2013, 139, 768–784. [Google Scholar] [CrossRef]
- Qi, J.D.; Ding, L.; Lim, S. Ontology-based knowledge representation of urban heat island mitigation strategies. Sustain. Cities Soc. 2020, 52, 101875. [Google Scholar] [CrossRef]
- Li, Y.H.; Garcia-Castro, R.; Mihindukulasooriya, N.; O’Donnell, J.; Vega-Sanchez, S. Enhancing energy management at district and building levels via an EM-KPI ontology. Autom. Constr. 2019, 99, 152–167. [Google Scholar] [CrossRef]
- Wang, M.Z. Ontology-based modelling of lifecycle underground utility information to support operation and maintenance. Autom. Constr. 2021, 132, 103933. [Google Scholar] [CrossRef]
- Qi, B.; Costin, A. BIM and Ontology-Based DfMA Framework for Prefabricated Component. Buildings 2023, 13, 394. [Google Scholar] [CrossRef]
- Wu, C.K.; Li, X.; Jiang, R.; Guo, Y.J.; Wang, J.; Yang, Z.L. Graph-based deep learning model for knowledge base completion in constraint management of construction projects. Comput.-Aided Civ. Inf. 2022, 38, 702–719. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Hou, K.P. Building a Knowledge Base of Bridge Maintenance Using Knowledge Graph. Adv. Civ. Eng. 2023, 2023, 6047489. [Google Scholar] [CrossRef]
- Lee, P.C.; Lo, T.P.; Tian, M.Y.; Long, D.B. An Efficient Design Support System based on Automatic Rule Checking and Case-based Reasoning. KSCE J. Civ. Eng. 2019, 23, 1952–1962. [Google Scholar] [CrossRef]
- Abanda, F.H.; Kamsu-Foguem, B.; Tah, J.H.M. BIM—New rules of measurement ontology for construction cost estimation. Eng. Sci. Technol.-Int. J.-Jestech 2017, 20, 443–459. [Google Scholar] [CrossRef]
- Han, K.K.; Cline, D.; Golparvar-Fard, M. Formalized knowledge of construction sequencing for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs. Adv. Eng. Inform. 2015, 29, 889–901. [Google Scholar] [CrossRef]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating building and urban semantics to empower smart water solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Zhang, J.S.; El-Gohary, N.M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking. Autom. Constr. 2017, 73, 45–57. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Kim, W.; Kim, C.; Kim, J.; Yu, J. Integration of ifc objects and facility management work information using Semantic Web. Autom. Constr. 2018, 87, 173–187. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, K.R.; Yu, J.H. BIM and ontology-based approach for building cost estimation. Autom. Constr. 2014, 41, 96–105. [Google Scholar] [CrossRef]
- Ren, G.Q.; Li, H.J.; Zhang, J.S. A BIM-Based Value for Money Assessment in Public-Private Partnership: An Overall Review. Appl. Sci. 2020, 10, 6483. [Google Scholar] [CrossRef]
- Lygerakis, F.; Kampelis, N.; Kolokotsa, D. Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review. Energies 2022, 15, 7520. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A review of computer vision-based structural health monitoring at local and global levels. Struct. Health Monit.—Int. J. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Gilani, S.; Quinn, C.; McArthur, J.J. A review of ontologies within the domain of smart and ongoing commissioning. Build. Environ. 2020, 182, 107099. [Google Scholar] [CrossRef]
- Donkers, A.; Yang, D.J.; de Vries, B.; Baken, N. Semantic Web Technologies for Indoor Environmental Quality: A Review and Ontology Design. Buildings 2022, 12, 1522. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Grilo, A. Bibliometric analysis and review of Building Information Modelling literature published between 2005 and 2015. Autom. Constr 2017, 80, 118–136. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, C.; Aziz, N.M.; Kamaruzzaman, S.N. BIM-GIS Integrated Utilization in Urban Disaster Management: The Contributions, Challenges, and Future Directions. Remote Sens. 2023, 15, 1331. [Google Scholar] [CrossRef]
- Zhu, J.X.; Wright, G.; Wang, J.; Wang, X.Y. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level. ISPRS Int. J. Geo-Inf. 2018, 7, 66. [Google Scholar] [CrossRef]
- Celeste, G.; Lazoi, M.; Mangia, M.; Mangialardi, G. Innovating the Construction Life Cycle through BIM/GIS Integration: A Review. Sustainability 2022, 14, 766. [Google Scholar] [CrossRef]
- Cursi, S.; Martinelli, L.; Paraciani, N.; Calcerano, F.; Gigliarelli, E. Linking external knowledge to heritage BIM. Autom. Constr. 2022, 141, 104444. [Google Scholar] [CrossRef]
- Jiang, S.H.; Jiang, L.P.; Han, Y.W.; Wu, Z.; Wang, N. OpenBIM: An Enabling Solution for Information Interoperability. Appl. Sci. 2019, 9, 5358. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X.H. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Yang, X.C.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Zhong, B.T.; Wu, H.T.; Li, H.; Sepasgozar, S.; Luo, H.B.; He, L. A scientometric analysis and critical review of construction related ontology research. Autom. Constr. 2019, 101, 17–31. [Google Scholar] [CrossRef]
- Jiang, S.H.; Feng, X.; Zhang, B.; Shi, J.T. Semantic enrichment for BIM: Enabling technologies and applications. Adv. Eng. Inform. 2023, 56, 101961. [Google Scholar] [CrossRef]
- Pauwels, P.; Zhang, S.J.; Lee, Y.C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.Y.; Wright, G.; Cheng, J.C.P.; Li, X.; Liu, R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef]
- Xia, H.S.; Liu, Z.S.; Efremochkina, M.; Liu, X.T.; Lin, C.X. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Deng, H.; Xu, Y.W.; Deng, Y.C.; Lin, J.R. Transforming knowledge management in the construction industry through information and communications technology: A 15-year review. Autom. Constr. 2022, 142, 104530. [Google Scholar] [CrossRef]
- Shi, Y.L.; Liu, X.P. Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef]
- Zhao, X.B. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Note Express, Version 3.7.0. Beijing Aegean Software Co., Ltd.: Beijing, China, 2022; Available online: https://www.inoteexpress.com/aegean/ (accessed on 16 November 2022).
- Elsevier. Automation in Construction; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- VOSviewer, 1.6.19. Centre for Science and Technology Studies, Leiden University, The Netherlands. Available online: https://www.vosviewer.com/ (accessed on 15 October 2023).
- Tchouanguem, J.F.; Karray, M.H.; Foguem, B.K.; Magniont, C.; Abanda, F.H.; Smith, B. BFO-based ontology enhancement to promote interoperability in BIM. Appl. Ontol. 2021, 16, 453–479. [Google Scholar] [CrossRef]
- Pauwels, P.; Krijnen, T.; Terkaj, W.; Beetz, J. Enhancing the ifcOWL ontology with an alternative representation for geometric data. Autom. Constr. 2017, 80, 77–94. [Google Scholar] [CrossRef]
- Pauwels, P.; Van Deursen, D.; Verstraeten, R.; De Roo, J.; De Meyer, R.; Van de Walle, R.; Van Campenhout, J. A semantic rule checking environment for building performance checking. Autom. Constr. 2011, 20, 506–518. [Google Scholar] [CrossRef]
- Terkaj, W.; Sojic, A. Ontology-based representation of IFC EXPRESS rules: An enhancement of the ifcOWL ontology. Autom. Constr. 2015, 57, 188–201. [Google Scholar] [CrossRef]
- IFC 4.3.2.0 (IFC4X3_ADD2). Available online: https://standards.buildingsmart.org/IFC/RELEASE/IFC4_3/HTML/content/introduction.htm (accessed on 19 March 2024).
- Gonzalez, E.; Pineiro, J.D.; Toledo, J.; Arnay, R.; Acosta, L. An approach based on the ifcOWL ontology to support indoor navigation. Egypt. Inform. J. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Y.S.; Wang, M.; Gu, M.; Yong, J.H. A query expansion method for retrieving online BIM resources based on Industry Foundation Classes. Autom. Constr. 2015, 56, 14–25. [Google Scholar] [CrossRef]
- BuildingSMART Technical. IFC Formats. Available online: https://technical.buildingsmart.org/standards/ifc/ifc-formats/ (accessed on 16 January 2024).
- Zhang, L.; Issa, R.R.A. Ontology-Based Partial Building Information Model Extraction. J. Comput. Civil. Eng. 2013, 27, 576–584. [Google Scholar] [CrossRef]
- Gómez-Romero, J.; Bobillo, F.; Ros, M.; Molina-Solana, M.; Ruiz, M.D.; Martín-Bautista, M.J. A fuzzy extension of the semantic Building Information Model. Autom. Constr. 2015, 57, 202–212. [Google Scholar] [CrossRef]
- Pauwels, P.; Terkaj, W. EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology. Autom. Constr. 2016, 63, 100–133. [Google Scholar] [CrossRef]
- Liu, H.X.; Lu, M.; Al-Hussein, M. Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry. Adv. Eng. Inform. 2016, 30, 190–207. [Google Scholar] [CrossRef]
- Deng, Y.C.; Cheng, J.C.P.; Anumba, C. Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Autom. Constr. 2016, 67, 1–21. [Google Scholar] [CrossRef]
- Zhang, C.; Beetz, J.; de Vries, B. BimSPARQL: Domain-specific functional SPARQL extensions for querying RDF building data. Semant. Web 2018, 9, 829–855. [Google Scholar] [CrossRef]
- de Farias, T.M.; Roxin, A.; Nicolle, C. A rule-based methodology to extract building model views. Autom. Constr. 2018, 92, 214–229. [Google Scholar] [CrossRef]
- He, D.D.; Li, Z.F.; Wu, C.L.; Ning, X. An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data. Sustainability 2018, 10, 2613. [Google Scholar] [CrossRef]
- Ma, Z.L.; Liu, Z. Ontology- and and freeware-based platform for rapid development of BIM applications with reasoning support. Autom. Constr. 2018, 90, 1–8. [Google Scholar] [CrossRef]
- Simeone, D.; Cursi, S.; Acierno, M. BIM semantic-enrichment for built heritage representation. Autom. Constr. 2019, 97, 122–137. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.R.; Zhou, W.T.; Yuan, J.F. Study on the Evaluation Method of Green Construction Based on Ontology and BIM. Adv. Civ. Eng. 2019, 2019, 5650463. [Google Scholar] [CrossRef]
- Noor, S.; Shah, L.; Adil, M.; Gohar, N.; Saman, G.E.; Jamil, S.; Qayum, F. Modeling and representation of built cultural heritage data using semantic web technologies and building information model. Comput. Math. Organ. Theory 2019, 25, 247–270. [Google Scholar] [CrossRef]
- McGlinn, K.; Brennan, R.; Debruyne, C.; Meehan, A.; McNerney, L.; Clinton, E.; Kelly, P.; O’Sullivan, D. Publishing authoritative geospatial data to support interlinking of building information models. Autom. Constr. 2021, 124, 103534. [Google Scholar] [CrossRef]
- Jia, J.; Gao, J.Y.; Wang, W.X.; Ma, L.; Li, J.D.; Zhang, Z.J. An Automatic Generation Method of Finite Element Model Based on BIM and Ontology. Buildings 2022, 12, 1949. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, J.Y.; Pan, Z.Y.; Wang, C.Y.; Mulatibieke, N. A Multiscale Modelling Approach to Support Knowledge Representation of Building Codes. Buildings 2022, 12, 1638. [Google Scholar] [CrossRef]
- Chen, J.J.; Lu, W.S.; Fu, Y.L.; Dong, Z.M. Automated facility inspection using robotics and BIM: A knowledge-driven approach. Adv. Eng. Inform. 2023, 55, 101838. [Google Scholar] [CrossRef]
- Hagedorn, P.; Liu, L.; König, M.; Hajdin, R.; Blumenfeld, T.; Stöckner, M.; Billmaier, M.; Grossauer, K.; Gavin, K. BIM-Enabled Infrastructure Asset Management Using Information Containers and Semantic Web. J. Comput. Civil. Eng. 2023, 37, 04022041. [Google Scholar] [CrossRef]
- Chen, K.Y.; Chen, W.W.; Cheng, J.C.P.; Wang, Q. Developing Efficient Mechanisms for BIM-to-AR/VR Data Transfer. J. Comput. Civil. Eng. 2020, 34, 04020037. [Google Scholar] [CrossRef]
- Johansen, K.W.; Schultz, C.; Teizer, J. Hazard ontology and 4D benchmark model for facilitation of automated construction safety requirement analysis. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 2128–2144. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, J.Y.; Wang, C.Y.; Pan, Z.Y. Intelligent control of building fire protection system using digital twins and semantic web technologies. Autom. Constr. 2023, 147, 104728. [Google Scholar] [CrossRef]
- Suter, G. Modeling multiple space views for schematic building design using space ontologies and layout transformation operations. Autom. Constr. 2022, 134, 104041. [Google Scholar] [CrossRef]
- Shi, J.Y.; Pan, Z.Y.; Jiang, L.; Chen, P.Z.; An, C.; Mulatibieke, N. Research on a methodology for intelligent seismic performance evaluation and optimization design of buildings based on IFC and ontology. Eng. Struct. 2023, 288, 116213. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, M.; Lin, Y.N.; Cui, C.Y.; Shi, X.B.; Liu, Y. Safety Risk Management of Prefabricated Building Construction Based on Ontology Technology in the BIM Environment. Buildings 2022, 12, 765. [Google Scholar] [CrossRef]
- Sacks, R.; Wang, Z.J.; Ouyang, B.Y.; Utkucu, D.; Chen, S.Y. Toward artificially intelligent cloud-based building information modelling for collaborative multidisciplinary design. Adv. Eng. Inform. 2022, 53, 101711. [Google Scholar] [CrossRef]
- Costa, G.; Sicilia, A. Alternatives for facilitating automatic transformation of BIM data using semantic query languages. Autom. Constr. 2020, 120, 103384. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J.; Haymaker, J. BIM and GIS Integration and Interoperability Based on Semantic Web Technology. J. Comput. Civil. Eng. 2016, 30, 3. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wu, Z.; Zhang, B.; Cha, H.S. Combined MvdXML and Semantic Technologies for Green Construction Code Checking. Appl. Sci. 2019, 9, 1463. [Google Scholar] [CrossRef]
- Ren, G.Q.; Li, H.J.; Ding, R.; Zhang, J.S.; Boje, C.L.; Zhang, W.S. Developing an information exchange scheme concerning value for money assessment in Public-Private Partnerships. J. Build. Eng. 2019, 25, 100828. [Google Scholar] [CrossRef]
- Scherer, R.J.; Schapke, S.E. A distributed multi-model-based Management Information System for simulation and decision-making on construction projects. Adv. Eng. Inform. 2011, 25, 582–599. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J. Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Autom. Constr. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Mignard, C.; Nicolle, C. Merging BIM and GIS using ontologies application to urban facility management in ACTIVe3D. Comput. Ind. 2014, 65, 1276–1290. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Yu, J. Ontological inference of work item based on BIM data. KSCE J. Civ. Eng. 2015, 19, 538–549. [Google Scholar] [CrossRef]
- Nepal, M.P.; Staub-French, S.; Pottinger, R.; Zhang, J.M. Ontology-Based Feature Modeling for Construction Information Extraction from a Building Information Model. J. Comput. Civil. Eng. 2013, 27, 555–569. [Google Scholar] [CrossRef]
- Kim, K.; Kim, G.; Yoo, D.; Yu, J. Semantic material name matching system for building energy analysis. Autom. Constr. 2013, 30, 242–255. [Google Scholar] [CrossRef]
- Jeong, Y. A Study on the BIM Evaluation, Analytics, and Prediction (EAP) Framework and Platform in Linked Building Ontologies and Reasoners with Clouds. Adv. Civ. Eng. 2018, 2018, 5478381. [Google Scholar] [CrossRef]
- Dibley, M.J.; Li, H.; Miles, J.C.; Rezgui, Y. Towards intelligent agent based software for building related decision support. Adv. Eng. Inform. 2011, 25, 311–329. [Google Scholar] [CrossRef]
- Yin, M.T.; Tang, L.; Webster, C.; Li, J.Y.; Li, H.T.; Wu, Z.Q.; Cheng, R.C.K. Two-stage Text-to-BIMQL semantic parsing for building information model extraction using graph neural networks. Autom. Constr. 2023, 152, 104902. [Google Scholar] [CrossRef]
- Peng, J.L.; Liu, X.J. Automated code compliance checking research based on BIM and knowledge graph. Sci. Rep. 2023, 13, 7065. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Martín, J.J.; Castilla-Rodriguez, I.; González, E.J.; Martín-Dorta, N. A method for transferring BIM data into domain ontologies: A case study based on airport services. Egypt. Inform. J. 2022, 23, 447–467. [Google Scholar] [CrossRef]
- Xu, S.; Liu, K.C.; Tang, L.C.M.; Li, W.Z. A framework for integrating syntax, semantics and pragmatics for computer-aided professional practice: With application of costing in construction industry. Comput. Ind. 2016, 83, 28–45. [Google Scholar] [CrossRef]
- Hu, M.; Liu, Y.R. E-maintenance platform design for public infrastructure maintenance based on IFC ontology and Semantic Web services. Concurr. Comput.-Pract. Exp. 2020, 32, 5204. [Google Scholar] [CrossRef]
- Du, J.; He, R.Z.; Sugumaran, V. Clustering and ontology-based information integration framework for surface subsidence risk mitigation in underground tunnels. Clust. Comput.-J. Netw. Softw. Tools Appl. 2016, 19, 2001–2014. [Google Scholar] [CrossRef]
- Cyganiak, R.; Wood, D.; Lanthaler, M.; Klyne, G.; Carroll, J.J.; McBride, B. RDF 1.1 concepts and abstract syntax. W3C Recomm. 2014, 25, 1–22. [Google Scholar]
- Suárez-Figueroa, M.C.; García-Castro, R.; Villazón-Terrazas, B.; Gómez-Pérez, A. Essentials in ontology engineering: Methodologies, languages, and tools. In Proceedings of the 2nd Workshop Organized by the eeb Data Models Community-CIB, Sophia Antipolis, France, 26–28 October 2011. [Google Scholar]
- Welty, C.; McGuinness, D.L.; Smith, M.K. Owl Web Ontology Language Guide. W3C Recommendation 10 February 2004. Available online: http://www.w3.org/TR/2004/REC-owl-guide-20040210 (accessed on 25 August 2023).
- Hori, M.; Euzenat, J.; Patel-Schneider, P. OWL Web Ontology Language XML Presentation Syntax. W3C Note 11 June 2003. Available online: https://www.w3.org/TR/owl-xmlsyntax/ (accessed on 25 August 2023).
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available online: https://www.w3.org/submissions/SWRL/#owls_classAtom (accessed on 10 March 2024).
- SPARQL 1.1 Protocol. Available online: https://www.w3.org/TR/sparql11-protocol/ (accessed on 10 March 2024).
- Chen, C.; Zhao, Z.F.; Xiao, J.Z.; Tiong, R. A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment. Sustainability 2021, 13, 13875. [Google Scholar] [CrossRef]
- Ali, M.; Mohamed, Y. A Framework for Visualizing Heterogeneous Construction Data Using Semantic Web Standards. Adv. Civ. Eng. 2018, 2018, 8370931. [Google Scholar] [CrossRef]
- Yang, X.C.; Lu, Y.C.; Murtiyoso, A.; Koehl, M.; Grussenmeyer, P. HBIM Modeling from the Surface Mesh and Its Extended Capability of Knowledge Representation. ISPRS Int. J. Geo-Inf. 2019, 8, 301. [Google Scholar] [CrossRef]
- Zhong, B.T.; Gan, C.; Luo, H.B.; Xing, X.J. Ontology-based framework for building environmental monitoring and compliance checking under BIM environment. Build. Environ. 2018, 141, 127–142. [Google Scholar] [CrossRef]
- Ren, G.Q.; Li, H.J.; Liu, S.; Goonetillake, J.; Khudhair, A.; Arthur, S. Aligning BIM and ontology for information retrieve and reasoning in value for money assessment. Autom. Constr. 2021, 124, 103565. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.R.; Sugumaran, V.; Liu, B.W.; Du, J. Automated structural defects diagnosis in underground transportation tunnels using semantic technologies. Autom. Constr. 2019, 107, 102929. [Google Scholar] [CrossRef]
- Shin, S.; Issa, R.R.A. BIMASR: Framework for Voice-Based BIM Information Retrieval. J. Constr. Eng. Manag. 2021, 147, 04021124. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, N.; Wu, J. Combining BIM and Ontology to Facilitate Intelligent Green Building Evaluation. J. Comput. Civil. Eng. 2018, 32, 5. [Google Scholar] [CrossRef]
- Huitzil, I.; Molina-Solana, M.; Gómez-Romero, J.; Bobillo, F. Minimalistic fuzzy ontology reasoning: An application to Building Information Modeling. Appl. Soft Comput. 2021, 103, 107158. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, J.Y.; Wang, C.Y. Multi-ontology fusion and rule development to facilitate automated code compliance checking using BIM and rule-based reasoning. Adv. Eng. Inform. 2022, 51, 101449. [Google Scholar] [CrossRef]
- Wu, S.F.; Shen, Q.Y.; Deng, Y.C.; Cheng, A. Natural-language-based intelligent retrieval engine for BIM object database. Comput. Ind. 2019, 108, 73–88. [Google Scholar] [CrossRef]
- Moyano, J.; Carreño, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- McGlinn, K.; Yuce, B.; Wicaksono, H.; Howell, S.; Rezgui, Y. Usability evaluation of a web-based tool for supporting holistic building energy management. Autom. Constr. 2017, 84, 154–165. [Google Scholar] [CrossRef]
- Ait-Lamallam, S.; Sebari, I.; Yaagoubi, R.; Doukari, O. IFCInfra4OM: An Ontology to Integrate Operation and Maintenance Information in Highway Information Modelling. ISPRS Int. J. Geo-Inf. 2021, 10, 305. [Google Scholar] [CrossRef]
- Peraketh, B.; Menzel, C.; Mayer, R.J.; Fillion, F.; Futrell, M.T.; DeWitte, P. Ontology capture method (IDEF5). Knowl. Based Syst. Inc. Tech. Rep. 1994. [Google Scholar] [CrossRef]
- Gruninger, M. Methodology for the design and evaluation of ontologies. In Proceedings of the IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, QC, Canada, 13 April 1995. [Google Scholar]
- Noy, N.F.; McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology. 2001. Available online: https://protege.stanford.edu/publications/ontology_development/ontology101.pdf (accessed on 26 October 2023).
- Schreiber, G.; Wielinga, B.; Jansweijer, W. The KACTUS view on the ‘O’word. In Proceedings of the IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, QC, Canada, 13 April 1995; p. 21. [Google Scholar]
- Uschold, M.; Gruninger, M. Ontologies: Principles, methods and applications. Knowl. Eng. Rev. 1996, 11, 93–136. [Google Scholar] [CrossRef]
- Fernández-López, M.; Gómez-Pérez, A.; Juristo, N. METHONTOLOGY: From Ontological Art Towards Ontological Engineering. In Proceedings of the AAAI-97 Spring Symposium Series, Palo Alto, CA, USA, 24–25 March 1997. [Google Scholar]
- Suarez-Figueroa, M.C.; de Cea, G.A.; Buil, C.; Dellschaft, K.; Fernandez-Lopez, M.; Garcia, A.; Gomez-Perez, A.; Herrero, G.; Montiel-Ponsoda, E.; Sabou, M. NeOn methodology for building contextualized ontology networks. NeOn Deliv. D 2008, 5, 1–4. [Google Scholar]
- Dao, J.C.; Ng, S.T.; Yang, Y.F.; Zhou, S.H.; Xu, F.J.; Skitmore, M. Semantic framework for interdependent infrastructure resilience decision support. Autom. Constr. 2021, 130, 103852. [Google Scholar] [CrossRef]
- Guo, B.H.W.; Goh, Y.M. Ontology for design of active fall protection systems. Autom. Constr. 2017, 82, 138–153. [Google Scholar] [CrossRef]
- Beetz, J.; Van Leeuwen, J.; De Vries, B. IfcOWL: A case of transforming EXPRESS schemas into ontologies. Ai Edam 2009, 23, 89–101. [Google Scholar] [CrossRef]
- Soman, R.K.; Molina-Solana, M.; Whyte, J.K. Linked-Data based Constraint-Checking (LDCC) to support look-ahead planning in construction. Autom. Constr. 2020, 120, 103369. [Google Scholar] [CrossRef]
- McGlinn, K.; Wagner, A.; Pauwels, P.; Bonsma, P.; Kelly, P.; O’Sullivan, D. Interlinking geospatial and building geometry with existing and developing standards on the web. Autom. Constr. 2019, 103, 235–250. [Google Scholar] [CrossRef]
- Previtali, M.; Brumana, R.; Stanga, C.; Banfi, F. An Ontology-Based Representation of Vaulted System for HBIM. Appl. Sci. 2020, 10, 1377. [Google Scholar] [CrossRef]
- de Oliveira, S.G.; Biancardo, S.A.; Tibaut, A. Optimizing H-BIM Workflow for Interventions on Historical Building Elements. Sustainability 2022, 14, 9703. [Google Scholar] [CrossRef]
- Tibaut, A.; de Oliveira, S.G. A Framework for the Evaluation of the Cultural Heritage Information Ontology. Appl. Sci. 2022, 12, 795. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.L.; Zhu, H.X. A Semantic-Based Methodology to Deliver Model Views of Forward Design for Prefabricated Buildings. Buildings 2022, 12, 1158. [Google Scholar] [CrossRef]
- Colucci, E.; Xing, X.F.; Kokla, M.; Mostafavi, M.A.; Noardo, F.; Spanò, A. Ontology-Based Semantic Conceptualisation of Historical Built Heritage to Generate Parametric Structured Models from Point Clouds. Appl. Sci. 2021, 11, 2813. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Lu, Y.T.; Tian, M. The Synergy of Metadata and Metamodel through Algorithm Modeling-Case Study of the Roof Tiles in Yangxindian Palace (Beijing, China). Appl. Sci. 2022, 12, 7031. [Google Scholar] [CrossRef]
- Shen, K.N.; Ding, L.; Wang, C.C. Development of a Framework to Support Whole-Life-Cycle Net-Zero-Carbon Buildings through Integration of Building Information Modelling and Digital Twins. Buildings 2022, 12, 1747. [Google Scholar] [CrossRef]
- Stepien, M.; Bochum, R.U. Ontology for Spatial Reasoning in Tunnel Projects. Available online: https://rub-informatik-im-bauwesen.github.io/srt/ (accessed on 10 March 2024).
- Stepien, M.; Jodehl, A.; Vonthron, A.; König, M.; Thewes, M. An approach for cross-data querying and spatial reasoning of tunnel alignments. Adv. Eng. Inform. 2022, 54, 101728. [Google Scholar] [CrossRef]
- Ait-Lamallam, S.; Yaagoubi, R.; Sebari, I.; Doukari, O. Extending the IFC Standard to Enable Road Operation and Maintenance Management through OpenBIM. ISPRS Int. J. Geo-Inf. 2021, 10, 496. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhao, Q.; Liu, Y.H.; Hei, X.H.; Li, Z.J. Semiautomatic Generation of Code Ontology Using ifcOWL in Compliance Checking. Adv. Civ. Eng. 2021, 2021, 8861625. [Google Scholar] [CrossRef]
- Pu, H.; Fan, X.M.; Schonfeld, P.; Li, W.; Zhang, W.; Wei, F.H.; Wang, P.; Li, C.H. Extending IFC for multi-component subgrade modeling in a railway station. Autom. Constr. 2022, 141, 104433. [Google Scholar] [CrossRef]
- da Silva, T.F.L.; de Carvalho, M.M.; Vieira, D.R. BIM critical-success factors in the design phase and risk management: Exploring knowledge and maturity mediating effect. J. Constr. Eng. Manag. 2022, 148, 04022104. [Google Scholar] [CrossRef]
- Koo, H.J.; O’Connor, J.T. A Strategy for Building Design Quality Improvement through BIM Capability Analysis. J. Constr. Eng. Manag. 2022, 148, 04022066. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.C.; Lu, X.Z.; Lin, J.R. Knowledge-informed semantic alignment and rule interpretation for automated compliance checking. Autom. Constr. 2022, 142, 104524. [Google Scholar] [CrossRef]
- Zhou, P.; El-Gohary, N. Semantic information alignment of BIMs to computer-interpretable regulations using ontologies and deep learning. Adv. Eng. Inform. 2021, 48, 101239. [Google Scholar] [CrossRef]
- Hanák, T.; Drozdová, A.; Marović, I. Bidding strategy in construction public procurement: A contractor’s perspective. Buildings 2021, 11, 47. [Google Scholar] [CrossRef]
- Hassim, S.; Muniandy, R.; Alias, A.H.; Abdullah, P. Construction tender price estimation standardization (TPES) in Malaysia: Modeling using fuzzy neural network. Eng. Constr. Archit. Manag. 2018, 25, 443–457. [Google Scholar] [CrossRef]
- Colucci, E.; De Ruvo, V.; Lingua, A.; Matrone, F.; Rizzo, G. HBIM-GIS Integration: From IFC to CityGML Standard for Damaged Cultural Heritage in a Multiscale 3D GIS. Appl. Sci. 2020, 10, 1356. [Google Scholar] [CrossRef]
- Delgado, F.; Martínez-González, M.M.; Finat, J. An evaluation of ontology matching techniques on geospatial ontologies. Int. J. Geogr. Inf. Sci. 2013, 27, 2279–2301. [Google Scholar] [CrossRef]
- Rezgui, Y.; Boddy, S.; Wetherill, M.; Cooper, G. Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction? Comput. Aided Des. 2011, 43, 502–515. [Google Scholar] [CrossRef]
- Deng, H.; Tian, M.; Ou, Z.B.; Deng, Y.C. A semantic framework for on-site evacuation routing based on awareness of obstacle accessibility. Autom. Constr. 2022, 136, 104154. [Google Scholar] [CrossRef]
- Nabavi, A.; Ramaji, I.; Sadeghi, N.; Anderson, A. Leveraging natural language processing for automated information inquiry from building information models. J. Inf. Technol. Constr. 2023, 28, 266–285. [Google Scholar] [CrossRef]
- An, S.; Martinez, P.; Al-Hussein, M.; Ahmad, R. BIM-based decision support system for automated manufacturability check of wood frame assemblies. Autom. Constr. 2020, 111, 103065. [Google Scholar] [CrossRef]
- Eastman, C.; Lee, J.M.; Jeong, Y.S.; Lee, J.K. Automatic rule-based checking of building designs. Autom. Constr. 2009, 18, 1011–1033. [Google Scholar] [CrossRef]
- El-Mekawy, M.; Östman, A. Semantic mapping: An ontology engineering method for integrating building models in IFC and CityGML. In Proceedings of the 3rd Isde Digital Earth Summit, Nessebar, Bulgaria, 12–14 June 2010. [Google Scholar]
- Krijnen, T.; Beetz, J. A SPARQL query engine for binary-formatted IFC building models. Autom. Constr. 2018, 95, 46–63. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.S.; Pauwels, P.; Guo, H.; Gu, M. Enhanced Explicit Semantic Analysis for Product Model Retrieval in Construction Industry. IEEE Trans. Ind. Inform. 2017, 13, 3361–3369. [Google Scholar] [CrossRef]
- Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef] [PubMed]
- The Apache Software Foundation. Apache Jena, Version 5.0.0; The Apache Software Foundation: Forest Hill, MD, USA, 2024. [Google Scholar]
- Farghaly, K.; Soman, R.K.; Zhou, S.A. The evolution of ontology in AEC: A two-decade synthesis, application domains, and future directions. J. Ind. Inf. Integr. 2023, 36, 100519. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.H.; Zhang, S.H.; Li, Y.; Yang, B.M.; Yuan, L. A cloud approach to unified lifecycle data management in architecture, engineering, construction and facilities management: Integrating BIMs and SNS. Adv. Eng. Inform. 2013, 27, 173–188. [Google Scholar] [CrossRef]
- Vanlande, R.; Nicolle, C.; Cruz, C. IFC and building lifecycle management. Autom. Constr. 2008, 18, 70–78. [Google Scholar] [CrossRef]
Format | Extension | Characteristic/Advantage | Disadvantage | Reference | Number |
---|---|---|---|---|---|
SPF | .ifc | The most widely used and compact format | Later format conversion | [26,56,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] | 27 |
XML | .ifcXML | Enhanced readability; applicability to more software | 113% file size | [25,30,57,87,88,89,90,91,92,93,94,95,96,97,98] | 15 |
Turtle RDF/XML | .ttl based on IfcOWL .rdf based on IfcOWL | Great flexibility in data description | 1372% file size 816% file size | [27,29,69,76,87,90,99,100,101] | 9 |
Language | RDF(S) | OWL | UML |
---|---|---|---|
Characteristics | Limited expression capacity | Stronger expression capacity | More intuitive and understandable graphical modeling |
common data format | inference capability | ||
Reference | [30,66,70,89,97,111,112,113,114] | [11,25,27,29,56,58,61,63,64,65,69,71,72,73,77,78,85,86,88,94,96,101,102,104,115,116,117,118,119,120,121,122,123] | [67,124] |
Application | Compliance checking, HBIM, cost estimation, etc.; buildings and infrastructure; whole lifecycle | Infrastructure; O&M |
Method | Characteristics/Advantages | Disadvantages | Reference |
---|---|---|---|
IDEF5 | A general approach that all ontology development methods should follow | Too abstract | [125] |
TOVE | A method for developing a task ontology; solving a specific problem; enterprise modeling | No iterative process for the generated ontology | [126] |
Seven-Step method | Building domain ontologies; high maturity | Lack of inspection and evaluation | [61,85,116,117,120,121,132] |
KATUCS | Based on the existing ontology or applied knowledge base emphasizing knowledge reuse | Few details of the method | [128] |
Skeletal method | Describing specific terms between enterprises; ontology validation required during development | Ambiguous ontology evolution | [129] |
METHONTOLOGY | Emphasizing ontology reuse; suitable for developing large ontologies | Failing to reflect iterative evolution | [67,74,78,81,133] |
Multi-step iterative methodology | Guiding ontology development through competency questions allowing for ontology evaluation | - | [26] |
Neon Methodology | A scenario-based methodology emphasizing the reuse, reconfiguration, and merging of resources | No guidance on key aspects of engineering processes | [27,98] |
Type | Integration Application Method | Data Information | Reference |
---|---|---|---|
Historical Building | Enhancing semantic representation, knowledge representation, and management | 3D building models; built heritage information | [40,72,74,113,122,137,138,139,141,142] |
Prefabricated Building | Heterogeneous data fusion; access to richer knowledge and information | Design models; construction models; assembly and fabrication knowledge | [85,140] |
Green Building | Structured representation of knowledge; rule-based reasoning | BIM; specification text | [32,73,87,89,96,98,118,123,143] |
Facility Management | Linking BIM and FM data; access and use of BIM-based facility information | Building models; historical working records of facilities | [29,78,80,90,93,98,101,114] |
Infrastructure Type | Data Type | Ontology Model | Function | Application Phase |
---|---|---|---|---|
Tunnel | IFC data; facility information | TDO | Defect Diagnosis [116] | O&M |
Tunnel model; map data; cadastral map; city model | srt-ontology | Spatial Reasoning of Alignments [145] | Conception and Planning | |
IFC data; status information; activity information | — | E-maintenance [103] | O&M | |
IFC data; collected data | OntModel | Surface Subsidence Risk Warning [104] | O&M | |
Road | IFC data; equipment data; digital terrain model | IFCInfra4OM | O&M Management [124,146] | O&M |
Railway | IFC data; railway code | IfcOWL | Compliance Checking [147] | Design |
Airport | IFC data; facility information | IfcOWL; Airm-mono | Facility Management [101] | O&M |
Researcher | Main Work | Step | Recall | Precision |
---|---|---|---|---|
Peng et al. [100] | Using the NLPIR Chinese word separation system to extract information from unstructured and semi-structured data. | Ontology modeling | - | >96% |
Zhang et al. [28] | Using Deep NLP to capture ACC-specific knowledge, AEC domain knowledge, and linguistic knowledge. | Ontology modeling | 98.7% | 87.6% |
Zheng et al. [151] | Strengthening the interpretation of rules based on the NLP approach. | Rule construction | 82.2% | 94.2% |
Zhou et al. [152] | Using deep learning techniques to measure semantic similarity to select matching instances. | Rule construction | 93.4% | 94.7% |
Shi et al. [84] | Designing the NSGA-II optimization algorithm to minimize initial construction costs and seismic loss expectations. | Inspection execution | - | - |
Lee et al. [24] | Using the AHP-TOPSIS method to provide design suggestion rank. | Inspection execution | - | - |
Researcher | Work | Aspect |
---|---|---|
Jiang et al. [89] | Combined mvdXML and semantic technology to organize and reuse green construction knowledge | Green construction |
Han et al. [26] | Supporting inference and detailed report of progress status when data are incomplete, WBS is at a high level, or BIM is not detailed | Schedule |
Soman et al. [135] | Using Linked Data-based constraint checking to define and check complex dynamic construction scheduling constraints | Schedule |
Guo and Goh [133] | Developing an ontology for Active Fall Protection System (AFPS-Onto) to facilitate knowledge reuse and sharing | Safety |
IFC | CityXML | |
---|---|---|
Modeling Language | EXPRESS | XML |
Geometric Representation | B-rep; Constructive Solid Geometry (CSG) | B-rep |
Application Scenario | Building details | Urban semantic information |
LoD Level | LoD 100–500 | LoD 0–4 |
Phase | Application Function | Data information | Reference |
---|---|---|---|
Design phase | Compliance checking; model optimization | IFC file; BIM model; design specification | [24,28,32,40,57,68,76,77,83,84,85,86,87,92,94,97,100,115,117,118,120,140,147,151,152,157] |
Preconstruction phase | Cost estimation; preconstruction planning | IFC file; valuation standard; GIS data | [25,30,66,71,90] |
Construction phase | Monitoring and management of quality, schedule, cost, and safety | IFC data; construction specification; on-site records | [26,57,70,73,81,85,89,95,112,133,135,158,159,160] |
Operation and maintenance phase | Building energy management, culture heritage maintenance, defect detection, etc. | IFC data; BIM model; historical work records; real-time monitoring data | [27,29,32,35,60,74,78,79,80,82,101,103,104,113,116,123,124,137,146] |
Data principal | (1) Direct or indirect association with IFC data; (2) Being expressive; (3) Being associated through ontology. |
Mode 1 | Mode 2 | Mode 3 | |
---|---|---|---|
Data integration purpose | BIM information query | Semantically enriched BIM models | Data interaction at the semantic level |
Semantics of integrated data | Being related to entities or attributes in IFC | Potential existence of entities or properties not in IFC files | Data schema different from IFC |
Structure of integrated data | Unstructured, but can be represented in a structure similar to IFC | Structured, but different from IFC schema | |
Application | Rule checking; green building evaluation; cost estimation | HBIM; defect detection; infrastructure management | BIM and GIS integration |
Name | Prefix | Domain |
---|---|---|
IFC Ontology | IfcOWL | https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL, accessed on 13 March 2024 |
Building Topology Ontology | bot | https://w3c-lbd-cg.github.io/bot/, accessed on 13 March 2024 |
Building Product Ontology | bpo | https://www.projekt-scope.de/ontologies/bpo/, accessed on 13 March 2024 |
Digital Construction | dic | https://digitalconstruction.github.io/v/0.3/index.html, accessed on 13 March 2024 |
Data Catalog Vocabulary | DCAT | https://www.w3.org/TR/vocab-dcat-2/#UML_DCAT_All_Attr, accessed on 13 March 2024 |
Time Ontology | Time | https://www.w3.org/TR/owl-time/, accessed on 13 March 2024 |
Semantic Sensor Network Ontology | ssn | https://www.w3.org/TR/vocab-ssn/, accessed on 13 March 2024 |
Organization Ontology | Org | https://www.w3.org/TR/vocab-org/, accessed on 13 March 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Ma, H.; Zhang, Z. Integration of Industry Foundation Classes and Ontology: Data, Applications, Modes, Challenges, and Opportunities. Buildings 2024, 14, 911. https://doi.org/10.3390/buildings14040911
Jia J, Ma H, Zhang Z. Integration of Industry Foundation Classes and Ontology: Data, Applications, Modes, Challenges, and Opportunities. Buildings. 2024; 14(4):911. https://doi.org/10.3390/buildings14040911
Chicago/Turabian StyleJia, Jing, Hongxin Ma, and Zijing Zhang. 2024. "Integration of Industry Foundation Classes and Ontology: Data, Applications, Modes, Challenges, and Opportunities" Buildings 14, no. 4: 911. https://doi.org/10.3390/buildings14040911
APA StyleJia, J., Ma, H., & Zhang, Z. (2024). Integration of Industry Foundation Classes and Ontology: Data, Applications, Modes, Challenges, and Opportunities. Buildings, 14(4), 911. https://doi.org/10.3390/buildings14040911