High-Temperature Behavior of Carbon Reinforced Concrete
Abstract
1. Introduction
2. Investigations on the Mass Change of the Textile Carbon Reinforcement under Temperature Load
2.1. Specimens and Test Procedure
2.2. Results of the Experimental Investigations
- Evolution of decomposition of the coating until start of oxidation of the carbon:
- Beginning of oxidation of the carbon until complete decomposition of the textile reinforcement:
3. Investigation of the Tensile Behavior of Carbon Reinforced Concrete under Temperature Stress
3.1. Material and Specimens
3.2. Experimental Setup and Test Program
4. Results and Discussion
4.1. Load-Bearing Behavior at Normal Temperature
4.2. Load-Independent Strains from the Stationary Tests
4.3. Tensile Carrying Capacity
- Temperatures up to 400 °C:
- Temperatures from 400 °C to the temperature of complete loss of load-bearing capacity:
4.4. Derivation of Temperature-Dependent Material Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jesse, F. Tragverhalten von Filamentgarnen in Zementgebundener Matrix. Ph.D. Thesis, Technische Universität Dresden, Fakultät Bauingenieurwesen, Dresden, Germany, 2004. [Google Scholar]
- Eckers, V.; Gries, T. Entwicklung eines Prüfplans für Bewehrungen für Textilbeton. Bautechnik 2012, 89, 754–763. [Google Scholar] [CrossRef]
- Brameshuber, W. RILEM TC 232-TDT: Uniaxial tensile test—Test method to determine the load bearing behaviour of tensile specimens made of Textile Reinforced Concrete. Mater. Struct. 2016, 49, 4923–4927. [Google Scholar]
- Lorenz, E.; Schütze, E.; Weiland, S. Textilbeton—Eigenschaften des Verbundwerkstoffs. Beton Stahlbetonbau 2015, 110, 29–41. [Google Scholar] [CrossRef]
- Lorenz, E.; Ortlepp, R.; Hausding, J.; Cherif, C. Effizienzsteigerung von Textilbeton durch Einsatz textiler Bewehrungen nach dem erweiterten Nähwirkverfahren. Beton Stahlbetonbau 2011, 106, 21–30. [Google Scholar] [CrossRef]
- Manocha, L.M.; Manocha, S. Studies on solution-derived ceramic coatings for oxidation protection of Carbon-Carbon composites. Carbon 1995, 33, 435–440. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhou, B.L.; Wang, Z.M. Oxidation protection of Carbon fibers by coatings. Carbon 1995, 33, 427–433. [Google Scholar] [CrossRef]
- Spaseska, D. The thermal behaviour of low-temperature produced carbon fibres for a special application. Bull. Chem. Technol. Maced. 1995, 18, 179–185. [Google Scholar]
- Hatta, H.; Aoki, T.; Kogo, Y.; Yarii, T. High-temperature oxidation behavior of SiC-coated carbon fiber reinforced carbon matrix composites. Compos. Part A 1999, 30, 515–520. [Google Scholar] [CrossRef]
- Morgan, P. Carbon Fibres and Their Composites; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Iacocca, G.; Duquette, D.J. The catalytic effect of platinum on the oxidation of carbon fibres. J. Mater. Sci. 1993, 28, 1113–1119. [Google Scholar] [CrossRef]
- Sheehan, J.E.; Strife, J.R. Ceramic coatings for carbon–carbon composites. Am. Ceram. Soc. Bull. 1988, 67, 369–374. [Google Scholar]
- Long, G.T. Influence of Boron Treatment on Oxidation of Carbon Fibre. J. Appl. Polym. Sci. 1996, 59, 915–921. [Google Scholar]
- Yin, Y.; Binner, J.G.P.; Cross, T.E.; Marshall, S.J. The oxidation behaviour of carbon fibres. J. Mater. Sci. 1994, 29, 2250–2254. [Google Scholar] [CrossRef]
- Eckel, A.J.; Cawley, J.D.; Parthasarathy, T.A. Oxidation Kinetics of a Continuous Carbon Phase in a Nonreactive Matrix. J. Am. Ceram. Soc. 1995, 78, 972–980. [Google Scholar] [CrossRef]
- Hennig, G.R. Catalytic oxidation of graphite. J. Mater. Sci. 1962, 29, 1129–1132. [Google Scholar] [CrossRef]
- Krüger, M.; Reinhardt, H.W. Fire Resistance of Textile-Reinforced Elements. In Proceedings of the Technical Session: Textile-Reinforced Concrete, Proceedings of ACI Fall Convention, Kansas City, MI, USA, 6–10 November 2005; Dubey, A., Ed.; SP-250CD-4. pp. 226–234. [Google Scholar]
- Brameshuber, W.; Gries, T.H.; Hegger, J.; Reinhardt, H.-W. Praxisgerechte Weiterentwicklung eines Bauteilintegrierten Schalungssystems aus Textilbeton; Forschungsbericht Nr. F 77 zum Vorhaben DBV 229/AIF 47 ZN; Universität Stuttgart: Stuttgart, Germany, 2004; pp. 92–132. [Google Scholar]
- Ehlig, D.; Jesse, F.; Curbach, M. Textile Reinforced Concrete (TRC) Strain Specimens under High Temperatures. In Proceedings of the ACI 2010 Spring Convention, Chicago, IL, USA, 21–25 March 2010. [Google Scholar]
- ISO 834-1; Feuerwiderstandsprüfungen—Bauteile—Teil 1: Allgemeine Anforderungen. ISO: Geneva, Switzerland, 1999.
- DIN 51006; Thermische Analyse (TA)—Thermogravimetrie (TG)—Grundlagen. ANSI: Washington, DC, USA, 2005.
- Hausding, J. Multiaxiale Gelege auf Basis der Kettenwirktechnik—Technologie für Mehrschichtverbunde mit Variabler Lagenanordnung. Ph.D. Thesis, Technische Universität Dresden, Fakultät Bauingenieurwesen, Dresden, Germany, 2010. [Google Scholar]
- Mäder, E.; Plonka, R.; Gao, S.-L. Coatings for Fibre and Interphase Modifications in a Cementitious Matrix. In Textile Reinforced Structures: Proceedings of the 2nd Colloquium on Textile Reinforced Structures (CTRS2); Curbach, M., Hegger, J., Eds.; Technische Universität Dresden: Dresden, Germany, 2003; pp. 121–132. [Google Scholar]
- Lorenz, E. Endverankerung und Übergreifung Textiler Bewehrungen in Betonmatrices. Ph.D. Thesis, Technische Universität Dresden, Fakultät Bauingenieurwesen, Dresden, Germany, 2015. [Google Scholar]
- Curbach, M.; Jesse, F. Beton im Textilbeton. In Ingenieurbaustoffe—Konstruktive Wege in die Zukunft. Festschrift zum 60. Geburtstag von Prof. Dr.-Ing. Harald Schorn; Universität Bochum: Bochum, Germany, 2001; pp. 29–44. [Google Scholar]
- Ruge, J.; Linnemann, R. Festigkeits- und Verformungsverhalten von Bau-, Beton- und Spannstählen bei hoher Temperatur. In Sonderforschungsbereich 148—Brandverhalten von Bauteilen, Arbeitsbericht 1984–1986, Teil 2, Teilprojekt B4; Technische Universität Braunschweig: Braunschweig, Germany, 1987; pp. 237–265. [Google Scholar]
- Schneider, R.; Lange, J. Untersuchungen zum zeitabhängigen mechanischen Materialverhalten von S460 im Brandfall. Stahlbau 2012, 81, 379–390. [Google Scholar] [CrossRef]
- Kordina, K.; Meyer-Ottens, C. Beton Brandschutz—Handbuch, 2nd ed.; Verlag Bau+Technik: Düsseldorf, Germany, 1999. [Google Scholar]
- Schneider, U. Ingenieurmethoden im Baulichen Brandschutz, 5th ed.; Expert Verlag GmbH: Renningen, Germany, 2007. [Google Scholar]
- Sauder, C.; Lamon, J.; Pailler, R. Thermomechanical Properties of Carbon Fibres at High Temperatures (up to 2000 °C). Compos. Sci. Technol. 2002, 62, 499–504. [Google Scholar] [CrossRef]
- Diederichs, U.; Jumppanen, U.M.; Penttala, V. Behaviour of High Strength Concrete at High Temperatures; Report 92; Techniche Universität Helsinki: Helsinki, Finland, 1989. [Google Scholar]
Component | Mass Parts [-] | Quantity [kg/m3] |
---|---|---|
Cement CEM III/B 32.5 NW/HS/NA (Schwenk) | 0.6667 | 628.0 |
Coal fly ash (BauMineral Herten) | 0.282 | 265.6 |
Microsilicon suspension (Woermann/Degussa/BASF) | 0.1067 | 100.5 |
Sand 0/1 (Ottendorf-Okrilla) | 1.00 | 942.0 |
Water | 0.2278 | 214.6 |
Superplasticizer Woerment FM 30 (Woermann) | 0.0125 | 10.5 |
Characteristics | Unit | Value |
---|---|---|
Compressive strength | N/mm2 | 76.3 |
Flexural strength | N/mm2 | 7.11 |
Young’s modulus | N/mm2 | 28,500 |
Density | N/mm2 | 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehlig, D.; Schumann, A.; Nietner, L. High-Temperature Behavior of Carbon Reinforced Concrete. Buildings 2024, 14, 364. https://doi.org/10.3390/buildings14020364
Ehlig D, Schumann A, Nietner L. High-Temperature Behavior of Carbon Reinforced Concrete. Buildings. 2024; 14(2):364. https://doi.org/10.3390/buildings14020364
Chicago/Turabian StyleEhlig, Daniel, Alexander Schumann, and Lutz Nietner. 2024. "High-Temperature Behavior of Carbon Reinforced Concrete" Buildings 14, no. 2: 364. https://doi.org/10.3390/buildings14020364
APA StyleEhlig, D., Schumann, A., & Nietner, L. (2024). High-Temperature Behavior of Carbon Reinforced Concrete. Buildings, 14(2), 364. https://doi.org/10.3390/buildings14020364