Feasibility Study of Magnesium Slag, Fly Ash, and Metakaolin to Replace Part of Cement as Cementitious Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions
2.2.1. Admixture Activity Test
2.2.2. Mix Design of Strength Test
2.2.3. Mix Design of Dry Shrinkage Test
2.3. Test Methods
2.3.1. Optimization Method Based on Response Surface Methodology
2.3.2. Strength and Activity Test
2.3.3. Dry Shrinkage Test
2.3.4. Microscopic Test
3. Results and Discussion
3.1. Activity Analysis of Materials Used in Cementitious Systems
3.2. Strength Curve Fitting and Response Surface Analysis of Composite Cementitious Materials
3.2.1. Establishment of Regression Equations
3.2.2. Analysis of Variance
3.2.3. Response Surface Model Analysis
3.2.4. Multi-Objective Optimization Based on Response Surfaces
3.3. XRD Analysis
3.4. Microscopic Morphology Analysis
3.5. Thermal Analysis Based on TG-DTG Curves
3.6. Pore Analysis Based on BET Test
3.7. Analysis of Drying Shrinkage Test of Cement Mortar Specimens
4. Conclusions
- (1)
- The activity of magnesium slag is low, and the 28-day activity index is only 55.15%, which cannot be utilized as an admixture alone in cement mortar and concrete as a cementitious material. Fly ash and metakaolin have higher activity, with a 28-day activity index of 92.49% and 94.64%, and can be used alone as active mixing material.
- (2)
- The best ratio of magnesium slag, fly ash, metakaolin, and cement of the four elements of the composite system is 10:10:10:70, the flexural strength and compressive strength of the cement mortar is 142.6% and 144.2% of the cement mortar mixed with 30% of magnesium slag alone, and it can reach more than 80% of the strength of pure cement mortar.
- (3)
- Magnesium slag can alleviate the volume shrinkage caused by drying cement mortar. Magnesium slag contains CaO and MgO inside, which undergoes expansion after hydration, thus suppressing the volume change caused by dry shrinkage of cement mortar.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, X.D.; He, T.S.; Da, Y.Q.; Xu, Y.D.; Zhao, F.W.; Sun, Y.H.; Yang, R.H. Improving the performance of incineration fly ash as cement admixture by high-temperature sintering and its toxic leaching characteristics. J. Clean. Prod. 2023, 416, 137875. [Google Scholar] [CrossRef]
- Lghalo, O.J.; Adeniyi, G.A. A perspective on environmental sustainability in the cement industry. Waste Dispos. Sustain. Energy 2020, 2, 161–164. [Google Scholar]
- Nwankwo, O.C.; Bamigboye, O.G.; Davies, E.E.L.; Michaels, A.T. High volume Portland cement replacement: A review. Constr. Build. Mater. 2020, 260, 120445. [Google Scholar] [CrossRef]
- Bentz, P.D.; Ferraris, F.C.; Jones, Z.S.; Lootens, D.; Zunino, F. Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Compos 2017, 78, 43–56. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Luo, L.; Liu, T.T.; Hao, L.W.; Li, Y.M.; Liu, P.F.; Zhu, T.Y. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef]
- Tan, C.; Yu, X.; Guan, Y.R. A technology-driven pathway to net-zero carbon emissions for China’s cement industry. Appl. Energy 2022, 325, 119804. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.Y. Utilization of carbonated alkaline solid wastes in ordinary Portland cement-metakaolin-limestone ternary mixture: Underlying the role of low grade-sustainable calcium carbonate sources. J. Clean. Prod. 2024, 456, 142382. [Google Scholar] [CrossRef]
- Ruan, S.S.; Liu, L.; Zhu, M.B.; Shao, C.C.; Xie, L. Development and field application of a modified magnesium slag-based mine filling cementitious material. J. Clean. Prod. 2023, 419, 138269. [Google Scholar] [CrossRef]
- Ruan, S.S.; Liu, L.; Zhu, M.B.; Shao, C.C.; Xie, L.; Hou, D.Z. Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material. Sci. Total Environ. 2023, 869, 161631. [Google Scholar] [CrossRef]
- Xie, G.; Liu, L.; Suo, Y.L.; Zhu, M.B.; Yang, P.; Sun, W.J. High-value utilization of modified magnesium slag solid waste and its application as a low-carbon cement admixture. J. Environ. Manag. 2023, 349, 119551. [Google Scholar] [CrossRef]
- Amini, O.; Ghasemi, M. Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil. Constr. Build. Mater. 2019, 223, 409–420. [Google Scholar] [CrossRef]
- Liu, P.; Mo, L.; Zang, Z. Effects of carbonation degree on the hydration reactivity of steel slag in cement-based materials. Constr. Build. Mater. 2023, 370, 130653. [Google Scholar] [CrossRef]
- Song, Q.F.; Guo, M.Z.; Wang, L.; Ling, T.C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recycl. 2021, 173, 105740. [Google Scholar] [CrossRef]
- Li, Z.J.; Chen, J.; Lv, Z.Z.; Tong, Y.C.; Ran, J.Y.; Qin, C.L. Evaluation on direct aqueous carbonation of industrial/mining solid wastes for CO2 mineralization. J. Ind. Eng. Chem. 2023, 122, 359–365. [Google Scholar] [CrossRef]
- Deng, C.Q.; Jiang, Y.J.; Tian, T.; Yi, Y. Laboratory mechanical properties and frost resistance of vibration-compacted cement-fly ash slurry and cement-fly ash-treated macadam mixtures. Constr. Build. Mater. 2024, 419, 135555. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.F.; Liu, J.P.; Chen, X.S.; Ren, F.Z.; Chen, W.B.; Cui, H.Z. Improvement of shrinkage resistance and mechanical property of cement-fly ash-slag ternary blends by shrinkage-reducing polycarboxylate superplasticizer. J. Clean. Prod. 2024, 447, 141493. [Google Scholar] [CrossRef]
- Li, M.Y.; Zheng, K.R.; Chen, L.; Prateek, G.; Zhou, X.F.; Yuan, Q. Using metakaolin to improve properties of aged Portland cement: Effectiveness and the mechanism. Constr. Build. Mater. 2024, 428, 136299. [Google Scholar] [CrossRef]
- Reza, H.; Akbar, A.R.; Mirdarsoltany, M. Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review. J. Build. Eng. 2021, 44, 103011. [Google Scholar]
- Zhan, P.M.; He, Z.H.; Ma, Z.M.; Liang, C.F.; Zhang, X.X.; Abreham, A.A.; Shi, J.Y. Utilization of nano-metakaolin in concrete: A review. J. Build. Eng. 2020, 30, 101259. [Google Scholar] [CrossRef]
- Jin, K.R.; Zhou, X.M.; Wang, D.Z.; Bi, W.L.; Lu, Y.; Wang, J.H. Performance of cementitious materials prepared with magnesium slag and concrete slurry waste. J. Build. Eng. 2024, 89, 109379. [Google Scholar] [CrossRef]
- Ji, G.X.; Peng, X.Q.; Wang, S.P.; Hu, C.; Ran, P.; Sun, K.K.; Zeng, L. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr. Build. Mater. 2021, 295, 123619. [Google Scholar] [CrossRef]
- Xie, G.; Suo, Y.L.; Liu, L.; Zhu, M.B.; Xie, L.; Qu, H.S.; Sun, W.J. Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material. Case Stud. Constr. Mater. 2023, 18, e01778. [Google Scholar] [CrossRef]
- Abdellatief, M.; Elemam, W.E.; Alanazi, H.; Tahwia, A.M. Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceram. Int. 2023, 49, 9395–9411. [Google Scholar] [CrossRef]
- Hafez, H.; Kassim, D.; Kurda, R.; Silva, R.V.; Brito, J.D. Assessing the sustainability potential of alkali-activated concrete from electric arc furnace slag using the ECO2 framework. Constr. Build. Mater. 2021, 281, 122559. [Google Scholar] [CrossRef]
- Abdellatief, M.; Elrahman, M.A.; Elgendy, G.; Bassioni, G.; Tahwia, A.M. Response surface methodology-based modelling and optimization of sustainable UHPC containing ultrafine fly ash and metakaolin. Constr. Build. Mater. 2023, 388, 131696. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standardization Administration of China: Beijing, China, 2021.
- GB/T 1596-2017; Fly Ash Used for Cement and Concrete. Standardization Administration of China: Beijing, China, 2017.
- JC/T 603-2004; Standard Test Method for Drying Shrinkage of Mortar. China National Building Material Industry Press: Beijing, China, 2004.
- Yang, X.B.; Dong, F.S.; Zhang, X.Z.; Li, C.Z.; Gao, Q. Review on Comprehensive Utilization of Magnesium Slag and Development Prospect of Preparing Backfilling Materials. Minerals 2022, 12, 1415. [Google Scholar] [CrossRef]
- Xie, D.M.; Zhang, Z.P.; Liu, Z.C.; Wang, F.Z.; Hu, S.G.; Fu, J. Utilization of magnesium slag to prepare CO2 solidified fiber cement board. Constr. Build. Mater. 2024, 411, 134345. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.X.; Song, W.D. Mechanical model and strength development evolution of high content fly ash–cement grouting material. Constr. Build. Mater. 2023, 398, 132492. [Google Scholar] [CrossRef]
- Gao, M.; Dai, J.; Jing, H.J.; Ye, W.J.; Sesay, T. Investigation of the performance of cement-stabilized magnesium slag as a road base material. Constr. Build. Mater. 2023, 403, 133065. [Google Scholar] [CrossRef]
- Overmann, S.; Weiler, L.; Haufe, J.; Vollpracht, A.; Matschei, T. Statistical assessment of the factors influencing fly ash reactivity. Constr. Build. Mater. 2024, 426, 136151. [Google Scholar] [CrossRef]
- Lee, J.; Lim, A.; Kim, J.; Moon, J. Durability study of Portland cement blended with metakaolin from thermodynamic modeling. J. Build. Eng. 2024, 89, 109369. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Ma, H.R.; Ba, M.F.; Fang, S.Y.; Wang, Y. The influence of secondary aluminum ash sintering and grinding fine powder on the mechanical properties and shrinkage characteristics of Portland cement matrix. J. Build. Eng. 2024, 89, 109244. [Google Scholar] [CrossRef]
- Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B.B. Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int. J. Heat Mass Transf. 2018, 122, 795–805. [Google Scholar] [CrossRef]
- Nodehi, M.; Ren, J.; Shi, X.J.; Debbarma, S.; Ozbakkaloglu, T. Experimental evaluation of alkali-activated and Portland cement-based mortars prepared using waste glass powder in replacement of fly ash. Constr. Build. Mater. 2023, 394, 132124. [Google Scholar] [CrossRef]
- Ruan, S.S.; Liu, L.; Shao, C.C.; Xie, L.; Zhu, M.B.; Wang, R.F. Study on the source of activity and differences between modified and unmodified magnesium slag as a filling cementitious material. Constr. Build. Mater. 2023, 392, 132019. [Google Scholar] [CrossRef]
Components | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O | P2O5 | Other |
---|---|---|---|---|---|---|---|---|---|---|
Magnesium slag | 56.0 | 27.0 | 1.2 | 7.4 | 0.1 | 6.3 | 0.1 | 0.09 | 0.04 | 0.17 |
Fly ash | 12.6 | 38.87 | 31.05 | 3.70 | 3.05 | 0.80 | 0.10 | 0.09 | 0.04 | 0.17 |
Metakaolin | 0.38 | 53.28 | 41.18 | 0.63 | 0.08 | 0.17 | 0.24 | 0.25 | 0.62 | 0.16 |
P.O. | 63.23 | 23.45 | 5.21 | 5.25 | 2.34 | — | — | — | — | — |
Specific Surface Area (m2/kg) | Loss on Ignition (%) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Initial | Final | 3d | 28d | 3d | 28d | ||
376 | 3.62 | 260 | 324 | 25.6 | 46.6 | 5.7 | 8.6 |
Sample | Cement (g) | Magnesium Slag (g) | Fly Ash (g) | Metakaolin (g) | ISO Standard Sand (g) | Water (mL) |
---|---|---|---|---|---|---|
P.O. | 450 | 0 | 0 | 0 | 1350 | 225 |
M30 | 315 | 135 | 0 | 0 | 1350 | 225 |
F30 | 315 | 0 | 135 | 0 | 1350 | 225 |
K30 | 315 | 0 | 0 | 135 | 1350 | 225 |
Sample | Cement (g) | Magnesium Slag (g) | Fly Ash (g) | Metakaolin (g) | ISO Standard Sand (g) |
---|---|---|---|---|---|
10-0-0 | 405 | 45 | 0 | 0 | 1350 |
0-10-0 | 405 | 0 | 45 | 0 | 1350 |
0-0-10 | 405 | 0 | 0 | 45 | 1350 |
10-10-10 | 315 | 45 | 45 | 45 | 1350 |
20-10-0 | 315 | 90 | 45 | 0 | 1350 |
20-0-10 | 315 | 90 | 0 | 45 | 1350 |
10-20-0 | 315 | 45 | 90 | 0 | 1350 |
0-20-10 | 315 | 0 | 90 | 45 | 1350 |
10-0-20 | 315 | 45 | 0 | 90 | 1350 |
0-10-20 | 315 | 0 | 45 | 90 | 1350 |
20-20-10 | 225 | 90 | 90 | 45 | 1350 |
20-10-20 | 225 | 90 | 45 | 90 | 1350 |
10-20-20 | 225 | 45 | 90 | 90 | 1350 |
Sample | Cement (g) | Magnesium Slag (g) | ISO Standard Sand (g) | Water-Cement Ratio |
---|---|---|---|---|
M0 | 500 | 0 | 1000 | 0.5 |
M10 | 450 | 50 | 1000 | 0.5 |
M20 | 400 | 100 | 1000 | 0.5 |
Sample | Magnesium Slag | Fly Ash | Metakaolin | 28-Day Activity Index |
---|---|---|---|---|
P.O. | 0 | 0 | 0 | — |
M30 | 30% | 0 | 0 | 55.15% |
F30 | 0 | 30% | 0 | 92.49% |
K30 | 0 | 0 | 30% | 94.64% |
Model Type | Continuous P | Misfit P | Corrected R2 | Predicted R2 | Result |
---|---|---|---|---|---|
Linear | 0.0003 | 0.0232 | 0.7583 | 0.6646 | — |
2FI | 0.7985 | 0.0175 | 0.7050 | 0.4022 | — |
Quadratic | 0.0048 | 0.0961 | 0.9576 | 0.7712 | Recommendation |
Model Type | Continuous P | Misfit P | Corrected R2 | Predicted R2 | Result |
---|---|---|---|---|---|
Linear | 0.0004 | 0.0201 | 0.7409 | 0.5940 | — |
2FI | 0.6128 | 0.0166 | 0.7123 | 0.2508 | — |
Quadratic | 0.0156 | 0.0569 | 0.9330 | 0.6295 | Recommendation |
Items | Sum of Squares | Degrees of Freedom | Mean Square Deviation | F Value | p Value |
---|---|---|---|---|---|
Model | 69.14 | 6 | 11.52 | 41.18 | <0.0001 |
A-Magnesium slag | 14.50 | 1 | 14.50 | 50.20 | 0.0001 |
B-Fly ash | 10.58 | 1 | 10.58 | 37.81 | 0.0003 |
C-Metakaolin | 40.04 | 1 | 40.04 | 144.75 | <0.0001 |
AB | 2.56 | 1 | 2.56 | 9.15 | 0.0164 |
AC | 1.44 | 1 | 1.44 | 5.15 | 0.0530 |
BC | 0.010 | 1 | 0.010 | 0.036 | 0.8548 |
Residual | 2.24 | 8 | 0.28 | — | — |
Lack of Fit | 2.11 | 6 | 0.35 | 5.56 | 0.1603 |
Pure error | 0.13 | 2 | 0.063 | — | — |
Total Correlation Coefficient | 71.37 | 14 | — | — | — |
Items | Sum of Squares | Degrees of Freedom | Mean Square Deviation | F Value | p Value |
---|---|---|---|---|---|
Model | 9.48 | 9 | 1.05 | 13.95 | 0.0049 |
A-Magnesium slag | 1.90 | 1 | 1.90 | 25.18 | 0.0040 |
B-Fly ash | 1.80 | 1 | 1.80 | 23.91 | 0.0045 |
C-Metakaolin | 3.00 | 1 | 3.00 | 39.75 | 0.0015 |
AB | 0.16 | 1 | 0.16 | 2.12 | 0.2052 |
AC | 0.90 | 1 | 0.90 | 11.95 | 0.0181 |
BC | 0.64 | 1 | 0.64 | 8.48 | 0.0333 |
A2 | 0.0052 | 1 | 0.0052 | 0.069 | 0.8036 |
B2 | 0.014 | 1 | 0.014 | 0.19 | 0.6803 |
C2 | 1.07 | 1 | 1.07 | 14.13 | 0.0132 |
Residual | 0.38 | 5 | 0.075 | — | — |
Lack of Fit | 0.36 | 3 | 0.12 | 11.92 | 0.0784 |
Pure error | 0.020 | 2 | 0.01 | — | — |
Total Correlation Coefficient | 9.86 | 14 | — | — | — |
Parameter to be Optimized | Magnesium Slag | Fly Ash | Metakaolin | Compressive Strength | Flexural Strength |
---|---|---|---|---|---|
Lower limit | 0% | 0% | 10% | 47.8 | 8.1 |
Upper limit | 20% | 20% | 28.5 | 5.5 | |
Goal | 0~20% | 0~20% | maximize | maximize |
Parameter to Be Optimized | Magnesium Slag | Fly Ash | Metakaolin | Compressive Strength | Flexural Strength |
---|---|---|---|---|---|
Optimum | 10% | 10% | 10% | 38.5 | 6.7 |
Desirability | 0.913 |
Sample | 3-Day | 28-Day | ||
---|---|---|---|---|
Average Pore Diameter (nm) | Pore Area (m2/g) | Average Pore Diameter (nm) | Pore Area (m2/g) | |
0-0-0 | 13.54 | 6.87 | 17.66 | 7.33 |
10-0-0 | 13.69 | 7.16 | 21.66 | 5.12 |
10-20-0 | 18.44 | 4.16 | 16.58 | 8.09 |
10-10-10 | 15.08 | 5.46 | 12.31 | 13.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Xiao, H.; Zhang, J.; He, Z.; Cao, X.; Guan, B. Feasibility Study of Magnesium Slag, Fly Ash, and Metakaolin to Replace Part of Cement as Cementitious Materials. Buildings 2024, 14, 3874. https://doi.org/10.3390/buildings14123874
Wei F, Xiao H, Zhang J, He Z, Cao X, Guan B. Feasibility Study of Magnesium Slag, Fly Ash, and Metakaolin to Replace Part of Cement as Cementitious Materials. Buildings. 2024; 14(12):3874. https://doi.org/10.3390/buildings14123874
Chicago/Turabian StyleWei, Fulu, Hairong Xiao, Jia Zhang, Zhenqing He, Xuanhao Cao, and Bowen Guan. 2024. "Feasibility Study of Magnesium Slag, Fly Ash, and Metakaolin to Replace Part of Cement as Cementitious Materials" Buildings 14, no. 12: 3874. https://doi.org/10.3390/buildings14123874
APA StyleWei, F., Xiao, H., Zhang, J., He, Z., Cao, X., & Guan, B. (2024). Feasibility Study of Magnesium Slag, Fly Ash, and Metakaolin to Replace Part of Cement as Cementitious Materials. Buildings, 14(12), 3874. https://doi.org/10.3390/buildings14123874