Experimental Study on the Behavior of Reinforced Concrete Derailment Containment Provisions under Quasi-Static Loads
Abstract
1. Introduction
Research Significance
2. Experimental Program
2.1. RC DCP System
2.2. Single-Anchor Test
2.3. RC DCP System Test
3. Results and Discussion
3.1. Failure Mode
3.2. Load–Displacement Relationship
3.3. Initial Stiffness Analysis
3.4. Energy Absorption Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Esmaeeli, N.; Sattari, F.; Lefsrud, L.; Macciotta, R. Critical Analysis of Train Derailments in Canada through Process Safety Techniques and Insights into Enhanced Safety Management Systems. Transp. Res. Rec. 2022, 2676, 603–625. [Google Scholar] [CrossRef]
- Zhang, Z.; Turla, T.; Liu, X. Analysis of human-factor-caused freight train accidents in the United States. J. Transp. Saf. Secur. 2021, 13, 1157–1186. [Google Scholar] [CrossRef]
- Dindar, S.; Kaewunruen, S.; An, M. A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components. Reliab. Eng. Syst. Saf. 2022, 218, 108130. [Google Scholar] [CrossRef]
- Wu, X.; Chi, M.; Gao, H.; Ke, X.; Zeng, J.; Wu, P.; Zhu, M. Post-derailment dynamic behavior of railway vehicles travelling on a railway bridge during an earthquake. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2014, 230, 418–439. [Google Scholar] [CrossRef]
- Heleno, R.; Montenegro, P.A.; Carvalho, H.; Ribeiro, D.; Calcada, R.; Baker, C.J. Influence of the railway vehicle properties in the running safety against crosswinds. J. Wind Eng. Ind. Aerodyn. 2021, 217, 104732. [Google Scholar] [CrossRef]
- Yanhui, L.; Al-Bukhaiti, K.; Shichun, Z.; Abas, H.; Nan, X.; Lang, Y.; Yu, Y.X.; Daguang, H. Numerical study on existing RC circular section members under unequal impact collision. Sci. Rep. 2022, 12, 14793. [Google Scholar] [CrossRef]
- Montenegro, P.A.; Carvalho, H.; Ribeiro, D.; Calçada, R.; Tokunaga, M.; Tanabe, M.; Zhai, W.M. Assessment of train running safety on bridges: A literature review. Eng. Struct. 2021, 241, 112425. [Google Scholar] [CrossRef]
- Tang, Z.; Hu, Y.; Wang, S.; Ling, L.; Zhang, J.; Wang, K. Train post-derailment behaviours and containment methods: A review. Railw. Eng. Sci. 2024, 32, 59–80. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, Y.; Xu, Y.; Du, C.; Zhang, Y.; Wang, N.; Chong, Y.; Wang, H.; Wu, D.; Liu, J.; et al. A high-speed railway network dataset from train operation records and weather data. Sci. Data 2022, 9, 244. [Google Scholar] [CrossRef]
- Büchel, B.; Spanninger, T.; Corman, F. Empirical dynamics of railway delay propagation identified during the large-scale Rastatt disruption. Sci. Rep. 2020, 10, 18584. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Loo, B.P.Y.; Vickerman, R. High-speed rail networks, economic integration and regional specialisation in China and Europe. Travel Behav. Soc. 2015, 2, 1–14. [Google Scholar] [CrossRef]
- Brabie, D.; Andersson, E. Dynamic simulation of derailments and its consequences. Veh. Syst. Dyn. 2006, 44 (Suppl. S1), 652–662. [Google Scholar] [CrossRef]
- Brabie, D. Wheel-Sleeper Impact Model in Rail Vehicles Analysis. J. Syst. Des. Dyn. 2007, 1, 468–480. [Google Scholar] [CrossRef]
- Brabie, D.; Andersson, E. Post-derailment dynamic simulation of rail vehicles—Methodology and applications. Veh. Syst. Dyn. 2008, 46 (Suppl. S1), 289–300. [Google Scholar] [CrossRef]
- Wu, X.; Chi, M.; Gao, H. Post-derailment dynamic behaviour of a high-speed train under earthquake excitations. Eng. Fail. Anal. 2016, 64, 97–110. [Google Scholar] [CrossRef]
- Guo, L.; Wang, K.; Lin, J.; Zhang, B.; Chen, Z.; Song, X.; Du, G. Study of the post-derailment safety measures on low-speed derailment tests. Veh. Syst. Dyn. 2016, 54, 943–962. [Google Scholar] [CrossRef]
- Kajitani, Y.; Kato, H.; Asano, K. Development of an L-shaped guide to prevent deviation from rails. JR-EAST Tech. Rev. 2010, 15, 53–56. [Google Scholar]
- Sunami, H.; Morimura, T.; Terumichi, Y.; Adachi, M. Model for analysis of bogie frame motion under derailment conditions based on full-scale running tests. Multibody Syst. Dyn. 2012, 27, 321–349. [Google Scholar] [CrossRef]
- Wu, X.; Chi, M.; Gao, H.; Zhang, D.; Zeng, J.; Wu, P.; Zhu, M. The study of post-derailment measures to limit the extent of a derailment. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2014, 230, 64–76. [Google Scholar] [CrossRef]
- Guo, B.; Ke, J. The Impacts of High-speed Rail on Sustainable Economic Development: Evidence from the Central Part of China. Sustainability 2020, 12, 2410. [Google Scholar] [CrossRef]
- Hamilton, B.A. Report on the Findings of: Current Practice and Effectiveness of Derailment Containment Provisions on High Speed Lines; HSL-Zuid Organisation: Zoetermeer, The Netherlands, 2004. [Google Scholar]
- Nguyen, H.Q.; Kim, H.-J.; Lim, N.-H.; Kang, Y.-S.; Kim, J.J. Feasibility Study of Steel Derailment Containment Provisions through Quasi-Static Experiments. Buildings 2024, 14, 171. [Google Scholar] [CrossRef]
- Lai, J.; Xu, J.; Wang, P.; Chen, J.; Fang, J.; Ma, D.; Chen, R. Numerical investigation on the dynamic behaviour of derailed railway vehicles protected by guard rail. Veh. Syst. Dyn. 2021, 59, 1803–1824. [Google Scholar] [CrossRef]
- Mao, J.H.; Xiang, J.; Gong, K. Mechanism and Application of a New Guard Rail for Improving the Stability of Small Radius Curve Tracks with Continuous Welded Rails. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing & Automation, Qindao, China, 29–30 June 2013; pp. 773–779. [Google Scholar]
- Nishimura, K.; Terumichi, Y.; Morimura, T.; Adachi, M.; Morishita, Y.; Miwa, M. Using Full Scale Experiments to Verify a Simulation Used to Analyze the Safety of Rail Vehicles During Large Earthquakes. J. Comput. Nonlinear Dyn. 2015, 10, 31013. [Google Scholar] [CrossRef]
- Zhan, T.; Wang, Z.; Ning, J. Failure behaviors of reinforced concrete beams subjected to high impact loading. Eng. Fail. Anal. 2015, 56, 233–243. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.; Jin, L.; Lan, D.; Du, X. A unified impact displacement prediction model for geometrically similar RC beams: From test specimen to prototype component. Int. J. Impact Eng. 2023, 181, 104731. [Google Scholar] [CrossRef]
- Liao, W.; Liu, K.; Ma, C.; Liang, J. Experimental study on consistency of the impact performance between composite beams and reinforced concrete beams. Compos. Struct. 2023, 308, 116677. [Google Scholar] [CrossRef]
- Husem, M.; Yilmaz, M.; Cosgun, S.I. Experimental and numerical investigations on reinforcement arrangements in RC deep beams. Adv. Concr. Constr. 2022, 13, 243–254. [Google Scholar]
- Authority, K.R.N. Railway Design Guideline and Handbook—Subsidiary and Safety Facilities for Main Lined; KR C-02060; Korea Rail Network Authority: Daejeon, Republic of Korea, 2017. [Google Scholar]
- Bae, H.-U.; Moon, J.; Lim, S.-J.; Park, J.-C.; Lim, N.-H. Full-Scale Train Derailment Testing and Analysis of Post-Derailment Behavior of Casting Bogie. Appl. Sci. 2020, 10, 59. [Google Scholar] [CrossRef]
- Song, I.-H.; Kim, J.-W.; Koo, J.-S.; Lim, N.-H. Modeling and Simulation of Collision-Causing Derailment to Design the Derailment Containment Provision Using a Simplified Vehicle Model. Appl. Sci. 2020, 10, 118. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kang, Y.-S.; Bang, C.-S. Structural Performance Assessment of Derailment Containment Provision for Railway using a Grid Steel Frame. Int. J. Concr. Struct. Mater. 2024, 18, 5. [Google Scholar] [CrossRef]
- Bae, H.-U.; Kim, K.-J.; Park, S.-Y.; Han, J.-J.; Park, J.-C.; Lim, N.-H. Functionality Analysis of Derailment Containment Provisions through Full-Scale Testing-I: Collision Load and Change in the Center of Gravity. Appl. Sci. 2022, 12, 11297. [Google Scholar] [CrossRef]
- Pham, T.M.; Hao, H. Influence of global stiffness and equivalent model on prediction of impact response of RC beams. Int. J. Impact Eng. 2018, 113, 88–97. [Google Scholar] [CrossRef]
- Fujikake, K.; Li, B.; Soeun, S. Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation. J. Struct. Eng. 2009, 135, 938–950. [Google Scholar] [CrossRef]
- Chungnam-National-University; Korea-Railroad-Research-Institute; CS-Global; UBI-E&C; Korea-Railroad-Authority-&-Road-Kinematics. Facility development and Performance Standard Research for Rail Vehicle Deviation Protection; Chungnam National University: Daejeon, Republic of Korea, 2020. (In Korean) [Google Scholar]
- Duy, N.P.; Hiep, D.V.; Anh, V.N. Performance of concrete beams reinforced with various ratios of hybrid GFRP/steel bars. Civ. Eng. J. 2020, 6, 1652–1669. [Google Scholar]
- Tran, C.T.N.; Li, B. Initial Stiffness of Reinforced Concrete Columns with Moderate Aspect Ratios. Sage J. 2012, 15, 265–276. [Google Scholar] [CrossRef]
- Ding, F.; Ding, H.; He, C.; Wang, L.; Lyu, F. Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients. Comput. Concr. 2022, 29, 127–144. [Google Scholar]
- Tena-Colunga, A. Aspects to Consider in the Assessment of Effective Stiffness for Reinforced Concrete Beams. J. Archit. Eng. 2021, 27, 04020048. [Google Scholar] [CrossRef]
- Al-Bukhaiti, K.; Yanhui, L.; Shichun, Z.; Abas, H.; Nan, X.; Lang, Y.; Yu, Y.X.; Daguang, H. Experimental Study on Existing RC Circular Members Under Unequal Lateral Impact Train Collision. Int. J. Concr. Struct. Mater. 2022, 16, 39. [Google Scholar] [CrossRef]
Specimen | Pu (kN) | Py (kN) | Δu (mm) | Δy (mm) | Ki (kN/mm) |
---|---|---|---|---|---|
S-1 | 155.8 | 97.9 | 16.75 | 2.05 | 47.65 |
S-2 | 153.0 | 101.4 | 15.38 | 1.82 | 55.74 |
S-3 | 160.5 | 118.1 | 13.91 | 1.99 | 59.50 |
Average | 156.4 | 105.8 | 15.35 | 1.95 | 54.30 |
(3.07) | (8.81) | (1.16) | (0.1) | (4.94) |
Notation | Pu (kN) | Py (kN) | Δu (mm) | Δy (mm) | Initial Stiffness (kN/mm) | Energy Absorption (kNmm) |
---|---|---|---|---|---|---|
Case 1—load at anchor No. 2 | 278.4 | 167.1 | 13.49 | 4.77 | 35.03 | 2525.9 |
(19.3) | (11.6) | (1.33) | (0.35) | (0.17) | (450) | |
Case 2—load at mid-span | 206.5 | 123.9 | 13.18 | 3.70 | 33.62 | 1978.2 |
(1.2) | (0.7) | (0.15) | (0.21) | (1.68) | (8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.Q.; Kim, H.J.; Lim, N.-H.; Kang, Y.-S.; Kim, J.J. Experimental Study on the Behavior of Reinforced Concrete Derailment Containment Provisions under Quasi-Static Loads. Buildings 2024, 14, 3252. https://doi.org/10.3390/buildings14103252
Nguyen HQ, Kim HJ, Lim N-H, Kang Y-S, Kim JJ. Experimental Study on the Behavior of Reinforced Concrete Derailment Containment Provisions under Quasi-Static Loads. Buildings. 2024; 14(10):3252. https://doi.org/10.3390/buildings14103252
Chicago/Turabian StyleNguyen, Huy Q., Hoi Jin Kim, Nam-Hyoung Lim, Yun-Suk Kang, and Jung J. Kim. 2024. "Experimental Study on the Behavior of Reinforced Concrete Derailment Containment Provisions under Quasi-Static Loads" Buildings 14, no. 10: 3252. https://doi.org/10.3390/buildings14103252
APA StyleNguyen, H. Q., Kim, H. J., Lim, N.-H., Kang, Y.-S., & Kim, J. J. (2024). Experimental Study on the Behavior of Reinforced Concrete Derailment Containment Provisions under Quasi-Static Loads. Buildings, 14(10), 3252. https://doi.org/10.3390/buildings14103252