Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings
Abstract
:1. Introduction
2. Degradation of Façades with Ceramic Claddings
3. Methods
3.1. Database
3.2. Adaptation of Probability and Sensitivity Indexes
3.3. Model Façade and Standard Maps
4. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM E 632; Standard Practice for Developing Accelerated Tests to Aid Prediction of the Service Life of Building Components and Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 1996.
- De Brito, J.; Silva, A.; Task Group. The factor method as a general framework for service life prediction: Past and future trends. In CIB W080-Prediction of Service Life for Buildings and Components; International Council for Research and Innovation in Building and Construction: Kanata, ON, Canada, 2021; Available online: https://cibworld.org/wp-content/uploads/2022/01/CIBW080-Factor-method_report_v14-final.pdf (accessed on 10 January 2023).
- ABNT NBR 15575-1; Residential Buildings—Performance. Part 1: General Requirements, Brazilian Association of Technical Standards. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2021. (In Portuguese)
- Guo, J.; Wang, Q.; Li, Y.; Liu, P. Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network. Comput. Civ. Infrastruct. Eng. 2020, 35, 1403–1418. [Google Scholar] [CrossRef]
- Flores-Colen, I.; de Brito, J. A systematic approach for maintenance budgeting of buildings façades based on predictive and preventive strategies. Constr. Build. Mater. 2010, 24, 1718–1729. [Google Scholar] [CrossRef]
- Silvestre, J.D.; de Brito, J. Inspection and Repair of Ceramic Tiling within a Building Management System. J. Mater. Civ. Eng. 2010, 22, 39–48. [Google Scholar] [CrossRef]
- Souza, J.; Silva, A.; de Brito, J.; Bauer, E. Application of a graphical method to predict the service life of adhesive ceramic external wall claddings in the city of Brasília, Brazil. J. Build. Eng. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Lee, K.; Hong, G.; Sael, L.; Lee, S.; Kim, H.Y. MultiDefectNet: Multi-Class Defect Detection of Building Façade Based on Deep Convolutional Neural Network. Sustainability 2020, 12, 9785. [Google Scholar] [CrossRef]
- Lee, J.-S. Value Engineering for Defect Prevention on Building Façade. J. Constr. Eng. Manag. 2018, 144, 04018069. [Google Scholar] [CrossRef]
- Pacheco, C.P.; Vieira, G.L. Quantitative and qualitative analysis of deterioration of facades with ceramic external coating. Ceramic 2017, 63, 432–445. [Google Scholar] [CrossRef]
- Bauer, E.; Souza, A. Failure patterns associated with facade zones and anomalies in the initiation and propagation of degradation. Constr. Build. Mater. 2022, 347, 128563. [Google Scholar] [CrossRef]
- Pereira, C.; de Brito, J.; Silvestre, J.D. Harmonised Classification of the Causes of Defects in a Global Inspection System: Proposed Methodology and Analysis of Fieldwork Data. Sustainability 2020, 12, 5564. [Google Scholar] [CrossRef]
- Pereira, C.; de Brito, J.; Silvestre, J.D. Harmonising the classification of diagnosis methods within a global building inspection system: Proposed methodology and analysis of fieldwork data. Eng. Fail. Anal. 2020, 115, 104627. [Google Scholar] [CrossRef]
- Silvestre, J.D.; de Brito, J. Ceramic tiling inspection system. Constr. Build. Mater. 2009, 23, 653–668. [Google Scholar] [CrossRef]
- Gaspar, P.; de Brito, J. Mapping defect sensitivity in external mortar renders. Constr. Build. Mater. 2005, 19, 571–578. [Google Scholar] [CrossRef]
- Krahmalny, T.A.; Evtushenko, S.I. Typical defects and damage to the industrial buildings’ facades. IOP Conf. Series: Mater. Sci. Eng. 2020, 775, 012135. [Google Scholar] [CrossRef]
- del Solar Serrano, P.; del Río Merino, M.; Villoria Sáez, P. Methodology for continuous improvement projects in housing constructions. Buildings 2020, 10, 199. [Google Scholar] [CrossRef]
- Botas, S.M.D.S.; Veiga, M.D.R.S.; Velosa, A.L. Adhesion of Air Lime–Based Mortars to Old Tiles: Moisture and Open Porosity Influence in Tile/Mortar Interfaces. J. Mater. Civ. Eng. 2015, 27, 04014161. [Google Scholar] [CrossRef]
- Ribeiro, A.; Mariot, H.; Angioletto, E.; Junior, A.D.N. Fire exposure behavior of epoxy reinforced with jute fiber applied to ceramic tiles for a ventilated facade system. Mater. Res. 2019, 22, e20180885. [Google Scholar] [CrossRef]
- Bezerra, L.M.; Uchôa, J.C.B.; Araújo, J.A.; Bonilla, J. Experimental and Numerical Investigation of Fatigue in Base-Rendering Mortar Used in Façades Undergoing Thermal Cycles. J. Mater. Civ. Eng. 2018, 30, 04018192. [Google Scholar] [CrossRef]
- Nadoushani, Z.S.M.; Akbarnezhad, A.; Jornet, J.F.; Xiao, J. Multi-criteria selection of façade systems based on sustainability criteria. Build. Environ. 2017, 121, 67–78. [Google Scholar] [CrossRef]
- França, F.; Holanda, F. Indiscipline which transforms architecture appropriations of domestic space in the Federal District. In Proceedings of the 7th International Space Syntax Symposium, Stockholm, Sweden, 8–11 June 2009; pp. 1–14. [Google Scholar]
- Moura, A.C.; Ribeiro, S.; Correa, I.; Braga, B. Parametric modelling of urban landscape: Decoding the Brasília of Lúcio costa from modernism to present days. J. Land Use Mobil. Environ. 2014, 1, 695–708. [Google Scholar]
- Souza, J.; Silva, A.; de Brito, J.; Bauer, E. Service life prediction of ceramic tiling systems in Brasília-Brazil using the factor method. Constr. Build. Mater. 2018, 192, 38–49. [Google Scholar] [CrossRef]
- Silvestre, J.; de Brito, J. Ceramic tiling in building façades: Inspection and pathological characterization using an expert system. Constr. Build. Mater. 2011, 25, 1560–1571. [Google Scholar] [CrossRef]
- Lourenço, T.; Matias, L.; Faria, P. Anomaly diagnosis in ceramic claddings by thermography-A review. In Proceedings of the 7th International Conference on Safety and Durability of Structures, ICOSADOS, Vila Real, Portugal, 10–12 May 2016; pp. 1–8. [Google Scholar]
- Lourenço, T.; Matias, L.; Faria, P. Anomalies detection in adhesive wall tiling systems by infrared thermography. Constr. Build. Mater. 2017, 148, 419–428. [Google Scholar] [CrossRef]
- Bauer, E.; de Freitas, V.P.; Mustelier, N.; Barreira, E.; de Freitas, S.S. Infrared thermography—Evaluation of the results reproducibility. Struct. Surv. 2015, 33, 20–35. [Google Scholar] [CrossRef]
- Feldfogel, S.; Rabinovitch, O. Evolution and stability of tile detachment—Experiments and modeling. Int. J. Solids Struct. 2021, 210, 145–161. [Google Scholar] [CrossRef]
- Galbusera, M.M.; de Brito, J.; Silva, A. Application of the Factor Method to the Prediction of the Service Life of Ceramic External Wall Cladding. J. Perform. Constr. Facil. 2015, 29, 04014086. [Google Scholar] [CrossRef]
- Bauer, E.; Milhomem, P.M.; Aidar, L.A.G. Evaluating the damage degree of cracking in facades using infrared thermography. J. Civ. Struct. Health Monit. 2018, 8, 517–528. [Google Scholar] [CrossRef]
- Silvestre, J.; de Brito, J. Statistical analysis of defects of tiles joints. Mater. Construcción 2007, 57, 85–92. [Google Scholar]
- Sun, K.; Peng, X.; Wang, S.; Zeng, L.; Ran, P.; Ji, G. Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Constr. Build. Mater. 2020, 253, 118952. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Classifying System for Façades and Anomalies. J. Perform. Constr. Facil. 2016, 30, 04014187. [Google Scholar] [CrossRef]
- de Souza, J.S.; Bauer, E.; Nascimento, M.L.M.; Capuzzo, V.M.S.; Zanoni, V.A.G. Study of damage distribution and intensity in regions of the facade. J. Build. Pathol. Rehabilitation 2016, 1, 3. [Google Scholar] [CrossRef]
- Bersch, J.D.; Verdum, G.; Guerra, F.L.; Socoloski, R.F.; Giordani, C.; Zucchetti, L.; Masuero, A.B. Diagnosis of Pathological Manifestations and Characterization of the Mortar Coating from the Facades of Historical Buildings in Porto Alegre—Brazil: A Case Study of Château and Observatório Astronômico. Int. J. Arch. Herit. 2021, 15, 1145–1169. [Google Scholar] [CrossRef]
- da Costa, V.S.; da Silveira, A.M.; Torres, A.D.S. Evaluation of Degradation State of Historic Building Facades through Qualitative and Quantitative Indicators: Case Study in Pelotas, Brazil. Int. J. Arch. Herit. 2022, 16, 1642–1665. [Google Scholar] [CrossRef]
- Bauer, E.; De Souza, J.S.; Piazzarollo, C.B. Application of the degradation measurement method in the study of facade service life. In Building Pathology, Durability and Service Life; Springer: Cham, Switzerland, 2020; pp. 105–119. [Google Scholar]
- Dubreuil, V.; Fante, K.P.; Planchon, O.; Sant’anna Neto, J.L. The types of annual climates in Brazil: An application of the classification of Koppen from 1961 to 2015. Confins-revue Franco-bresilienne De Geographie-revista Franco-brasileira De Geografia 2018, 23, 23. [Google Scholar] [CrossRef]
- Bauer, E.; Piazzarollo, C.B.; de Souza, J.S.; dos Santos, D.G. Relative importance of pathologies in the severity of facade degradation. J. Build. Pathol. Rehabil. 2020, 5, 7. [Google Scholar] [CrossRef]
- Ruggiero, G.; Marmo, R.; Nicolella, M. A Methodological Approach for Assessing the Safety of Historic Buildings’ Façades. Sustainability 2021, 13, 2812. [Google Scholar] [CrossRef]
- da Costa, V.S.; Torres, A.D.S. Diagnosis of degradation state of the historic building facade through qualitative and quantitative indicators: Case study of the Former School of Agronomy Eliseu Maciel. Int. J. Build. Pathol. Adapt. 2021. [Google Scholar] [CrossRef]
- Ibrahim, P.O.; Sternberg, H.; Samaila-Ija, H.A.; Adgidzi, D.; Nwadialor, I.J. Modelling topo-bathymetric surface using a triangulation irregular network (TIN) of Tunga Dam in Nigeria. Appl. Geomatics 2022, 15, 281–293. [Google Scholar] [CrossRef]
- Wetzel, A.; Zurbriggen, R.; Herwegh, M.; Greminger, A.; Kaufmann, J. Long-term study on failure mechanisms of exterior applied tilings. Constr. Build. Mater. 2012, 37, 335–348. [Google Scholar] [CrossRef]
- Zurbriggen, R.; Herwegh, M. Daily and seasonal thermal stresses in tilings: A field survey combined with numeric modeling. Mater. Struct. 2016, 49, 1917–1933. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H.; Kaloush, K.E. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sustain. Energy Rev. 2015, 47, 830–843. [Google Scholar] [CrossRef]
- Yiu, C.; Ho, D.; Lo, S.M. Weathering effects on external wall tiling systems. Constr. Build. Mater. 2007, 21, 594–600. [Google Scholar] [CrossRef]
- Wetzel, A.; Herwegh, M.; Zurbriggen, R.; Winnefeld, F. Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cem. Concr. Res. 2012, 42, 39–50. [Google Scholar] [CrossRef]
- Herwegh, M.; Zurbriggen, R.; Mettier, R.; Winnefeld, F.; Kaufmann, J.; Wetzel, A. Hygrical shrinkage stresses in tiling systems: Numerical modeling combined with field studies. Cem. Concr. Compos. 2015, 55, 1–10. [Google Scholar] [CrossRef]
- Blocken, B.; Dezsö, G.; van Beeck, J.; Carmeliet, J. Comparison of calculation models for wind-driven rain deposition on building facades. Atmospheric Environ. 2010, 44, 1714–1725. [Google Scholar] [CrossRef]
- Bordalo, R.; de Brito, J.; Gaspar, P.L.; Silva, A. Service life prediction modelling of adhesive ceramic tiling systems. Build. Res. Inf. 2011, 39, 66–78. [Google Scholar] [CrossRef]
- Costa, J.; Paulo, P.V.; Branco, F.A.; de Brito, J. Modeling Evolution of Stains Caused by Collection of Dirt in Old Building Facades. J. Perform. Constr. Facil. 2014, 28, 264–271. [Google Scholar] [CrossRef]
- Chwast, J.; Todorović, J.; Janssen, H.; Elsen, J. Gypsum efflorescence on clay brick masonry: Field survey and literature study. Constr. Build. Mater. 2015, 85, 57–64. [Google Scholar] [CrossRef]
- Pereira, C.; de Brito, J.; Silvestre, J.D. Contribution of humidity to the degradation of façade claddings in current buildings. Eng. Fail. Anal. 2018, 90, 103–115. [Google Scholar] [CrossRef]
Condition Level ( ) | Affected Area (%) | ||||
---|---|---|---|---|---|
Ceramic Detachment | Cracking | Grout Failure | Efflorescence | ||
1 | Good condition (acceptable) | No degradation | No degradation | <10% | <10% |
2 | One-off degradation condition | <5% | <20% | 10% < < 30% | 10% < < 30% |
3 | Service limit state condition | 5% < < 30% | 20% < <50% | >30% | >30% |
4 | Ultimate limit state condition | >30% | >50% | Condition level 3 | Condition level 3 |
Sensibility | Detachment | Cracking | Grout Failure | Efflorescence |
---|---|---|---|---|
Continuous walls | 0.654 | 0.105 | 0.012 | 0.0035 |
Openings | 0.390 | 0.038 | 0.016 | 0.0003 |
Balconies | 0.071 | 0.010 | 0.002 | 0.00003 |
Corners and borders | 0.634 | 0.121 | 0.017 | 0.0026 |
Transition between floors | 0.694 | 0.140 | 0.020 | 0.0027 |
Top | 0.559 | 0.178 | 0.018 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, W.; Souza, J.; Gaspar, P.; Silva, A. Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings. Buildings 2023, 13, 1209. https://doi.org/10.3390/buildings13051209
Castro W, Souza J, Gaspar P, Silva A. Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings. Buildings. 2023; 13(5):1209. https://doi.org/10.3390/buildings13051209
Chicago/Turabian StyleCastro, Wilamy, Jéssica Souza, Pedro Gaspar, and Ana Silva. 2023. "Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings" Buildings 13, no. 5: 1209. https://doi.org/10.3390/buildings13051209