# Study on the Cyclic Shear Performance of Waste Steel Slag Mixed Soil

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Method

#### 2.1. Materials

#### 2.1.1. Silty Clay

#### 2.1.2. Steel Slag

_{C}is 2.3 and the inhomogeneity coefficient C

_{U}is 11.3. Through basic physical tests, a maximum dry density of 2.40 g/cm

^{3}and a natural water content of 7.4% were obtained for the steel slag.

#### 2.2. Method

#### 2.2.1. Preparation of Sample

#### 2.2.2. Shear Strength Test

#### 2.2.3. Cyclic Shear Test

#### 2.2.4. Shear Strength Test

## 3. Results and Discussion

#### 3.1. Shear Strength Test

#### 3.2. Cyclic Shear Test

#### 3.2.1. Cycle Load Effect on Shear Strength

#### 3.2.2. Shear Stiffness and Damping Ratio

#### 3.2.3. Vertical Displacement under Cyclic Load

#### 3.3. Post-Cycle Shear Test

#### Disintegration Rate

## 4. Conclusions

- (1)
- Steel slag incorporation improves the shear strength of the soil interface and increases the cohesion and angle of internal friction of the soil mix. Vertical displacement decreased. The cohesion of the soil mix decreases with increasing steel slag content and the angle of internal friction increases. The shear strength of the soil interface decreases as the water content increases and the mechanical parameters of shear strength all decrease.
- (2)
- In cyclic shear tests, under different vertical stress, shear amplitude and moisture content conditions, it was found that:
- (a)
- The mixed soils all showed cyclic shear hardening and shear shrinkage. The shear reduction decreases as the number of cycles increases. At high water content conditions, the peak shear stress at the interface of the mixed soil remains essentially constant with an increasing number of cycles.
- (b)
- As the shear amplitude increases, the shear stiffness to damping ratio of the soil interface decreases. As the number of cycles increases, the shear stiffness of the soil interface increases and the damping ratio decreases.
- (c)
- A decrease in soil interface shear stiffness and an increase in damping ratio with increasing water content and an increase in the number of cycles increased shear stiffness and reduced damping ratio at the soil interface. Shear stiffness remained stable with an increasing number of cycles at 15% moisture content.

- (3)
- Compared to the results of the direct shear test, there was a significant increase in shear strength, a slight increase in cohesion and a significant increase in the angle of internal friction in the post-cycle direct shear test soil mix.
- (4)
- The shear resistance of the 40% steel slag mix was superior. Under cyclic shear loading, better damping and energy dissipation can be demonstrated. For reference when selecting ratios for practical engineering applications.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Shou, K.J.; Hong, C.Y.; Wu, C.C.; Hsu, H.Y.; Fei, L.Y.; Lee, J.F.; Wei, C.Y. Spatial and temporal analysis of landslides in Central Taiwan after 1999 Chi-Chi earthquake. Eng. Geol.
**2011**, 123, 122–128. [Google Scholar] [CrossRef] - Huang, R.; Pei, X.; Fan, X.; Zhang, W.; Li, S.; Li, B. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides
**2012**, 9, 131–142. [Google Scholar] [CrossRef] - Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides
**2009**, 6, 139–152. [Google Scholar] [CrossRef] - Kumar, J.; Madhusudhan, B.N. Dynamic properties of sand from dry to fully saturated states. Geotechnique
**2012**, 62, 45–54. [Google Scholar] [CrossRef] - Li, W.; Lang, L.; Wang, D.; Wu, Y.; Li, F. Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures. Constr. Build. Mater.
**2018**, 162, 170–180. [Google Scholar] [CrossRef] - Li, L.-h.; Wen, B.; Hu, Z. Study on reinforced shear behavior of construction waste filler and geosynthetics. J. Wuhan Univ.
**2019**, 52, 311–316. [Google Scholar] - Li, L.-h.; Xiao, H.-l.; Tang, M.-h.; Hu, Q.Z.; Sun, M.J.; Sun, L. Dynamic properties variation of tire shred-soil mixtures. Rock Soil Mech.
**2014**, 35, 359–364, 422. [Google Scholar] - Dang, D.T.; Nguyen, M.T.; Nguyen, T.P.; Isawa, T.; Ta, Y.; Sato, R. Mechanical properties of steel slag replaced mineral aggregate for road base/sub-base application based Vietnam and Japan standard. Environ. Sci. Pollut. Res.
**2022**, 29, 42067–42073. [Google Scholar] [CrossRef] - Vashistha, P.; Park, S.; Pyo, S. A Review on Sustainable Fabrication of Futuristic Cementitious Binders Based on Application of Waste Concrete Powder, Steel Slags, and Coal Bottom Ash. Int. J. Concr. Struct. Mater.
**2022**, 16, 51. [Google Scholar] [CrossRef] - Wang, C.; Zhang, C. Deformation of Steel Slag Asphalt Mixtures Under Normal Temperature Water Immersion. Front. Mater.
**2021**, 8, 718516. [Google Scholar] [CrossRef] - Jiao, W.; Sha, A.; Liu, Z.; Li, W.; Jiang, W.; Qin, W.; Hu, Y. Study on thermal properties of steel slag asphalt concrete for snow-melting pavement. J. Clean. Prod.
**2020**, 277, 123574. [Google Scholar] [CrossRef] - Wang, L.-y.; Zhang, B.; Xie, H.; Ji, W.; Huang, X. Study on Shear Strength Characteristics of Marine Silt Modified by Steel Slag. Adv. Civ. Eng.
**2021**, 2021, 9647977. [Google Scholar] [CrossRef] - Maghool, F.; Arulrajah, A.; Suksiripattanapong, C.; Horpibulsuk, S.; Mohajerani, A. Geotechnical properties of steel slag aggregates: Shear strength and stiffness. Soils Found.
**2019**, 59, 1591–1601. [Google Scholar] [CrossRef] - Wang, L.; Yan, J.; Wang, Q.; Wang, B.; Ishimwe, A. Study on Permeability of Steel Slag and Steel Slag Modifying Silt Soil As New Geo-backfill Materials. J. Eng.
**2019**, 2019, 5370748. [Google Scholar] [CrossRef] - Liu, X.; Hu, M.; Ke, S.; Fu, C.; Guo, X.; Ye, X. A novel rammed earthen material stabilized with steel slags. Constr. Build. Mater.
**2018**, 189, 1134–1139. [Google Scholar] [CrossRef] - Wang, L.Y.; Wang, Q.; Huang, X.; Yan, J. Experimental Investigation on Compressive Deformation and Shear Strength Characteristics of Steel Slag in the Geotechnical Engineering. In Proceedings of the Geoshanghai International Conference, Shanghai, China, 27–30 May 2018; Springer: Singapore, 2018. [Google Scholar]
- Chen, S.; Jia, F.; Liu, S.; Li, J. Experiments on the cyclic shear behavior of the interface between staggered stacking soilbags. Chin. J. Rock Mech. Eng.
**2021**, 40, 2945–2953. [Google Scholar] - Liu, F.-y.; Jiang, H.; Wang, J. Experimental study on cyclic shear softening characteristics of gravel-geogrid interface. Rock Soil Mech.
**2021**, 42, 1485–1492. [Google Scholar] - Li, L.-h.; Zang, T.-b.; Liu, Y.-l. Cyclic shear performance of fiber bottom ash mixed soils. Chin. J. Rock Mech. Eng.
**2021**, 40, 196–205. [Google Scholar] - Ying, M.-j.; Wang, J.; Liu, F.Y.; Li, J.T.; Chen, S.Q. Analysis of cyclic shear characteristics of reinforced soil interfaces under cyclic loading and unloading. Geotext. Geomembr.
**2022**, 50, 99–115. [Google Scholar] [CrossRef] - Wang, J.; Liu, F.Y.; Wang, P.; Cai, Y.Q. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests. Geotext. Geomembr.
**2016**, 44, 854–861. [Google Scholar] [CrossRef] - GB/T 50123-2019; National Standards of the People’s Republic of China. Standard for Geotechnical Test Methods. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019. (In Chinese)
- Desai, C.S.; Drumm, E.C.; Zaman, M.M. Cyclic testing and modeling of interfaces. J. Geotechnical. Eng.
**1985**, 111, 793.e815. [Google Scholar] [CrossRef] - Nye, C.J.; Fox, P.J. Dynamic shear behavior of a needle-punched geosynthetic clay liner. J. Geotech. Geoenvironmental Eng.
**2007**, 133, 973–983. [Google Scholar] [CrossRef] - Liu, F.-y.; Wang, P.; Wang, J.; Hu, X.; Cai, Y. Experimental research on reinforcement-soil interface stiffness and damping ratio under cyclic shearing. Rock Soil Mech.
**2016**, 37 (Suppl. S1), 159–165. [Google Scholar] - Liu, F.-y.; Shi, J.; Wang, J.; Cai, Y.-Q. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand. Rock Soil Mech.
**2018**, 39, 1991–1998. [Google Scholar] - Wu, M.-T.; Liu, F.-C.; Chen, J.-L.; Chen, L. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains. Rock Soil Mech.
**2018**, 39, 803–814, 847. [Google Scholar] - Chen, R.-F.; Yan, W.-Y.; Liu, X.-F.; Dong, X.-Q. Study of Dynamic Modulus and Damping Ratio of Loess Solidified by Red Mud under Different Water Content. Bull. Chin. Ceram. Soc.
**2017**, 36, 2810–2815. [Google Scholar]

**Figure 6.**Shear stress-shear displacement relationship curves at different moisture contents (

**a**) 30%SS + 70%C; (

**b**) 40%SS + 60%C; (

**c**) 50%SS + 50%C.

**Figure 8.**The relationship curve between the number of cycles and the peak shear stress of the reinforced soil interface with different shear amplitudes.

**Figure 11.**Shear stiffness and damping ratio of soil mixtures of different materials (

**a**) shear stiffness; (

**b**) damping ratio.

**Figure 12.**Shear stiffness and damping ratios at different moisture contents of 40% steel slag mixes (

**a**) shear stiffness; (

**b**) damping ratio.

**Figure 13.**Shear stiffness and damping ratio of 40% steel slag mixed soil with different shear amplitudes (

**a**) shear stiffness; (

**b**) damping ratio.

**Figure 14.**Horizontal displacement-vertical displacement variation curves for mixed soils of different materials (

**a**) SS:C = 3:7; (

**b**) SS:C = 4:6; (

**c**) SS:C = 5:5; (

**d**) C.

**Figure 15.**Horizontal displacement-vertical displacement variation curves for different moisture contents of 40% steel slag mix (

**a**) 9%; (

**b**) 12%; (

**c**) 15%. (

**a**) Cohesion and (

**b**) Internal friction angle.

**Figure 16.**Shear stress-shear displacement relationship before and after cyclic shear. (

**a**) under different vertical stress conditions, (

**b**) under different moisture content conditions.

Characteristics | Value |
---|---|

Liquid limit (%) | 32.49 |

Plasticity index | 10.6 |

Specific gravity | 2.72 |

Maximum dry density (g/cm^{3}) | 1.69 |

Optimum water content (%) | 18.2 |

Cohesion (kPa) | 28.44 |

Internal friction angle (°) | 25.08 |

Components | Value |
---|---|

MgO | 12.9 |

Al_{2}O_{3} | 8.7 |

SiO_{2} | 26.5 |

CaO | 34.0 |

Fe_{2}O_{3} | 12.9 |

TiO_{2} | 0.6 |

MnO | 1.2 |

Others | 3.1 |

Test Types | Test Number | Sample | Vertical Stress σ/kPa | Water Content/% | Degree of Compaction |
---|---|---|---|---|---|

Direct shear test | T-1 | 30%SS + 70%C | 200, 300, 400 | 9/12/15 | 95% |

T-2 | 40%SS + 60%C | 200, 300, 400 | 9/12/15 | ||

T-3 | 50%SS + 50%C | 200, 300, 400 | 9/12/15 | ||

T-4 | C | 200, 300, 400 | 18 |

Test Types | Test Number | Sample | Vertical Stress σ/kPa | Shear Amplitude | Water Content/% |
---|---|---|---|---|---|

Cyclic shear test | T-5 | 30%SS + 70%C | 200 | 5 | 9/12/15 |

T-6 | 40%SS + 60%C | 200/300/400 | 3/4/5 | 9/12/15 | |

T-7 | 50%SS + 50%C | 300 | 5 | 9/12/15 | |

T-8 | C | 300 | 5 | 18.3 |

Sample | c/(kPa) | φ/(°) |
---|---|---|

30%SS + 70%C | 92.62 | 26.86 |

40%SS + 60%C | 87.74 | 32.10 |

50%SS + 50%C | 43.31 | 30.17 |

C | 34.64 | 23.83 |

Sample | Water Content/% | c/(kPa) | φ/(°) |
---|---|---|---|

30%SS + 70%C | 9% | 117.81 | 27.97 |

12% | 92.62 | 26.86 | |

15% | 51.33 | 24.89 | |

40%SS + 60%C | 9% | 108.66 | 27.33 |

12% | 87.74 | 32.10 | |

15% | 85.16 | 25.69 | |

50%SS + 50%C | 9% | 67.12 | 30.17 |

12% | 43.31 | 24.10 | |

15% | 39.47 | 19.62 |

Test Type | c/kPa | φ/° |
---|---|---|

Straight shear test | 87.7 | 32.1 |

Post-cycle shear test | 95.4 | 50.3 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, W.; Zhu, Y.; Kang, H.; Xu, Q.; Han, Q.; Song, X.; Liu, Z.
Study on the Cyclic Shear Performance of Waste Steel Slag Mixed Soil. *Buildings* **2023**, *13*, 3133.
https://doi.org/10.3390/buildings13123133

**AMA Style**

Xu W, Zhu Y, Kang H, Xu Q, Han Q, Song X, Liu Z.
Study on the Cyclic Shear Performance of Waste Steel Slag Mixed Soil. *Buildings*. 2023; 13(12):3133.
https://doi.org/10.3390/buildings13123133

**Chicago/Turabian Style**

Xu, Weisheng, Yingna Zhu, Haoran Kang, Qing Xu, Qipei Han, Xiangwei Song, and Zhenwei Liu.
2023. "Study on the Cyclic Shear Performance of Waste Steel Slag Mixed Soil" *Buildings* 13, no. 12: 3133.
https://doi.org/10.3390/buildings13123133