Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Literature Search
2.2. Selection of Relevant Papers
2.3. Identification of DT Adoption in the Construction Industry Drivers
3. Results and Discussion
3.1. Annual Publication Trends on Drivers for DT Adoption in the Construction Industry
3.2. Geographical Considerations of DT Adoption in the Construction Industry
3.3. Drivers of DT Adoption in the Construction Industry
3.4. Classification of the DT in Construction Industry Drivers
3.4.1. Concept-Oriented Drivers
3.4.2. Production-Driven Drivers
3.4.3. Operational Success Drivers
3.4.4. Preservation-Driven Drivers
4. Conclusions
4.1. Practical Implications and Future Research Recommendations
4.2. Limitations of the Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. The building information modeling trajectory in facilities management: A review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Data for the Public Good. Available online: https://nic.org.uk/app/uploads/Data-for-the-Public-Good-NIC-Report.pdf (accessed on 20 November 2021).
- Ding, L.; Drogemuller, R. Towards sustainable facilities management. In Technology, Design and Process Innovation in the Built Environment; Spon Press: London, UK, 2009; pp. 399–418. [Google Scholar]
- Available online: https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-twins (accessed on 20 November 2021).
- Lee, J.; Lapira, E.; Bagheri, B.; Kao, H.-A. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Warke, V.; Kumar, S.; Bongale, A.; Kotecha, K. Sustainable Development of Smart Manufacturing Driven by the Digital Twin Framework: A Statistical Analysis. Sustainability 2021, 13, 10139. [Google Scholar] [CrossRef]
- Talkhestani, B.A.; Weyrich, M. Digital Twin of manufacturing systems: A case study on increasing the efficiency of reconfiguration. at-Automatisierungstechnik 2020, 68, 435–444. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar]
- Hribernik, K.A.; Rabe, L.; Thoben, K.-D.; Schumacher, J. The product avatar as a product-instance-centric information management concept. Int. J. Prod. Lifecycle Manag. 2006, 1, 367. [Google Scholar] [CrossRef]
- Kumar, S.; Patil, S.; Bongale, A.; Kotecha, K.; Bongale, A.K.M. Demystifying Artifificial Intelligence based Digital Twins in Manufacturing—A Bibliometric Analysis of Trends and Techniques. Libr. Philos. Pract. 2020, 2020, 1–21. [Google Scholar]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital twin application in the construction industry: A literature review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 2019, 228, 1537–1551. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheung, W.-F. Developing WSN/BIM-Based Environmental Monitoring Management System for Parking Garages in Smart Cities. J. Manag. Eng. 2020, 36, 04020012. [Google Scholar] [CrossRef]
- CRC Construction. Adopting BIM for Facilities Management: Solutions for Managing the Sydney Opera House; Cooperative Research Center for Construction Innovation: Brisbane, Australia, 2007. [Google Scholar]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmström, J. Digital twin: Vision, benefits, boundaries, and creation for buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Hou, L.; Wu, S.; Zhang, G.; Tan, Y.; Wang, X. Literature Review of Digital Twins Applications in Construction Workforce Safety. Appl. Sci. 2021, 11, 339. [Google Scholar] [CrossRef]
- Ozturk, G.B. Digital Twin Research in the AECO-FM Industry. J. Build. Eng. 2021, 40, 102730. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Alshammari, K.; Beach, T.; Rezgui, Y. Cybersecurity for digital twins in the built environment: Current research and future directions. J. Inf. Technol. Constr. 2021, 26, 159–173. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Cent. Eng. 2020, 1. [Google Scholar] [CrossRef]
- Briner, R.B.; Denyer, D. Systematic review and evidence synthesis as a practice and scholarship tool. In Oxford Handbook of Evidence-Based Management; Rousseau, D.M., Ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Chan, A.P.C.; Tetteh, M.O.; Nani, G. Drivers for international construction joint ventures adoption: A systematic literature review. Int. J. Constr. Manag. 2020, 1–13. [Google Scholar] [CrossRef]
- Osei-Kyei, R.; Chan, A.P.C. Review of studies on the Critical Success Factors for Public–Private Partnership (PPP) projects from 1990 to 2013. Int. J. Proj. Manag. 2015, 33, 1335–1346. [Google Scholar] [CrossRef]
- Tober, M. PubMed, ScienceDirect, Scopus or Google Scholar—Which is the best search engine for an effective literature research in laser medicine? Med. Laser Appl. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Grilo, A. Bibliometric analysis and review of Building Information Modelling literature published between 2005 and 2015. Autom. Constr. 2017, 80, 118–136. [Google Scholar] [CrossRef]
- Noor, B.A.; Yi, S. Review of BIM literature in construction industry and transportation: Meta-analysis. Constr. Innov. 2018, 18, 433–452. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Digital Twin and Web-Based Virtual Gaming Technologies for Online Education: A Case of Construction Management and Engineering. Appl. Sci. 2020, 10, 4678. [Google Scholar] [CrossRef]
- Porsani, G.B.; Del Valle de Lersundi, K.; Gutiérrez, A.S.-O.; Bandera, C.F. Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar] [CrossRef]
- Mannino, A.; Dejaco, M.C.; Re Cecconi, F. Building Information Modelling and Internet of Things Integration for Facility Management—Literature Review and Future Needs. Appl. Sci. 2021, 11, 3062. [Google Scholar] [CrossRef]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S. Digital Twin for Supply Chain Coordination in Modular Construction. Appl. Sci. 2021, 11, 5909. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Love, P.E.D.; Matthews, J. The ‘how’ of benefits management for digital technology: From engineering to asset management. Autom. Constr. 2019, 107, 102930. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2020, 122, 103517. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, L.; Li, S.; Pitt, M. Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings. Autom. Constr. 2020, 115, 103183. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Liang, C.-J.; Kamat, V.R.; Menassa, C.C. Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Autom. Constr. 2020, 120, 103370. [Google Scholar] [CrossRef]
- Marocco, M.; Garofolo, I. Integrating disruptive technologies with facilities management: A literature review and future research directions. Autom. Constr. 2021, 131, 103917. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Yang, A.; Gao, J. Digital Twin-Based Ecogreen Building Design. Complexity 2021, 2021, 1391184. [Google Scholar] [CrossRef]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Greif, T.; Stein, N.; Flath, C.M. Peeking into the void: Digital twins for construction site logistics. Comput. Ind. 2020, 121, 103264. [Google Scholar] [CrossRef]
- Al-Saeed, Y.; Edwards, D.J.; Scaysbrook, S. Automating construction manufacturing procedures using BIM digital objects (BDOs): Case study of knowledge transfer partnership project in UK. Constr. Innov. 2020, 20, 345–377. [Google Scholar] [CrossRef]
- Bosch-Sijtsema, P.; Claeson-Jonsson, C.; Johansson, M.; Roupe, M. The hype factor of digital technologies in AEC. Constr. Innov. 2021, 21, 899–916. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Bass, B.; New, J.; Copeland, W. Potential Energy, Demand, Emissions, and Cost Savings Distributions for Buildings in a Utility’s Service Area. Energies 2021, 14, 132. [Google Scholar] [CrossRef]
- O’Grady, T.M.; Brajkovich, N.; Minunno, R.; Chong, H.-Y.; Morrison, G.M. Circular Economy and Virtual Reality in Advanced BIM-Based Prefabricated Construction. Energies 2021, 14, 4065. [Google Scholar] [CrossRef]
- Demianenko, M.; De Gaetani, C.I. A Procedure for Automating Energy Analyses in the BIM Context Exploiting Artificial Neural Networks and Transfer Learning Technique. Energies 2021, 14, 2956. [Google Scholar] [CrossRef]
- Lydon, G.P.; Caranovic, S.; Hischier, I.; Schlueter, A. Coupled simulation of thermally active building systems to support a digital twin. Energy Build. 2019, 202, 109298. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Ghobadi, M.; Shirowzhan, S.; Edwards, D.J.; Delzendeh, E. Metrics development and modelling the mixed reality and digital twin adoption in the context of Industry 4.0. Eng. Constr. Arch. Manag. 2021, 28, 1355–1376. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Environ. 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Camposano, J.C.; Smolander, K.; Ruippo, T. Seven Metaphors to Understand Digital Twins of Built Assets. IEEE Access 2021, 9, 27167–27181. [Google Scholar] [CrossRef]
- Broo, D.G.; Schooling, J. A Framework for Using Data as an Engineering Tool for Sustainable Cyber-Physical Systems. IEEE Access 2021, 9, 22876–22882. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, L.; Fu, C.; Chen, Y.-W. Transparent Digital Twin for Output Control Using Belief Rule Base. IEEE Trans. Cybern. 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.J.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2021, 17, 746–756. [Google Scholar] [CrossRef]
- Rausch, C.; Lu, R.; Talebi, S.; Haas, C. Deploying 3D scanning based geometric digital twins during fabrication and assembly in offsite manufacturing. Int. J. Constr. Manag. 2021. [Google Scholar] [CrossRef]
- Antonino, M.; Nicola, M.; Claudio, D.M.; Luciano, B.; Fulvio, R.C. Office building occupancy monitoring through image recognition sensors. Int. J. Saf. Secur. Eng. 2019, 9, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [Google Scholar] [CrossRef]
- Meža, S.; Mauko Pranjić, A.; Vezočnik, R.; Osmokrović, I.; Lenart, S. Digital Twins and Road Construction Using Secondary Raw Materials. J. Adv. Transp. 2021, 2021, 8833058. [Google Scholar] [CrossRef]
- Oliveira, P.P. Digital twin development for airport management. J. Airpt. Manag. 2020, 14, 246–259. [Google Scholar]
- Hasan, S.M.; Lee, K.; Moon, D.; Kwon, S.; Jinwoo, S.; Lee, S. Augmented reality and digital twin system for interaction with construction machinery. J. Asian Arch. Build. Eng. 2021. [Google Scholar] [CrossRef]
- Tran, H.; Nguyen, T.N.; Christopher, P.; Bui, D.-K.; Khoshelham, K.; Ngo, T.D. A digital twin approach for geometric quality assessment of as-built prefabricated façades. J. Build. Eng. 2021, 41, 102377. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Gan, V.J.L.; Ma, J. BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. J. Clean. Prod. 2021, 278, 123505. [Google Scholar] [CrossRef]
- Züst, S.; Züst, R.; Züst, V.; West, S.; Stoll, O.; Minonne, C. A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows. J. Clean. Prod. 2021, 310, 127453. [Google Scholar] [CrossRef]
- Babalola, A.; Musa, S.; Akinlolu, M.T.; Haupt, T.C. A bibliometric review of advances in building information modeling (BIM) research. J. Eng. Des. Technol. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Anumba, C.J.; Ogunseiju, O.O. Towards next generation cyber-physical systems and digital twins for construction. J. Inf. Technol. Constr. 2021, 26, 505–525. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Steyn, W.J.V.D.M.; Broekman, A. Development of a Digital Twin of a Local Road Network: A Case Study. J. Test. Eval. 2021, 51. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, X.; Xing, Z.; Jiang, A. Digital Twin-Based Safety Risk Coupling of Prefabricated Building Hoisting. Sensors 2021, 21, 3583. [Google Scholar] [CrossRef]
- Ogunseiju, O.R.; Olayiwola, J.; Akanmu, A.A.; Nnaji, C. Digital twin-driven framework for improving self-management of ergonomic risks. Smart Sustain. Built Environ. 2021, 10, 403–419. [Google Scholar] [CrossRef]
- Shim, C.-S.; Dang, N.-S.; Lon, S.; Jeon, C.-H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar] [CrossRef]
- Omer, M.; Margetts, L.; Hadi Mosleh, M.; Hewitt, S.; Parwaiz, M. Use of gaming technology to bring bridge inspection to the office. Struct. Infrastruct. Eng. 2019, 15, 1292–1307. [Google Scholar] [CrossRef] [Green Version]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Hui, F.K.P.; Shirowzhan, S.; Foroozanfar, M.; Yang, L.; Aye, L. Lean Practices Using Building Information Modeling (BIM) and Digital Twinning for Sustainable Construction. Sustainability 2021, 13, 161. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability 2021, 13, 2051. [Google Scholar] [CrossRef]
- Zhang, Q.; Oo, B.L.; Lim, B.T.H. Drivers, motivations, and barriers to the implementation of corporate social responsibility practices by construction enterprises: A review. J. Clean. Prod. 2019, 210, 563–584. [Google Scholar] [CrossRef]
- Drisko, J.W.; Maschi, T. Content analysis. In Pocket Guides to Social Work R; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Assarroudi, A.; Heshmati Nabavi, F.; Armat, M.R.; Ebadi, A.; Vaismoradi, M. Directed qualitative content analysis: The description and elaboration of its underpinning methods and data analysis process. J. Res. Nurs. 2018, 23, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manufac. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Available online: https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme (accessed on 5 December 2021).
- Guo, H.L.; Li, H.; Skitmore, M. Life-Cycle Management of Construction Projects Based on Virtual Prototyping Technology. J. Manag. Eng. 2010, 26, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, S. What drives knowledge sharing in software development teams: A literature review and classification framework. Inf. Manag. 2015, 52, 82–97. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rashidi, M.; Mousavi, V.; Karami, A.; Yu, Y.; Samali, B. Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study. Remote Sens. 2021, 13, 3499. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef] [Green Version]
- Macchi, M.; Roda, I.; Negri, E.; Fumagalli, L. Exploring the role of Digital Twin for Asset Lifecycle Management. IFAC-PapersOnLine 2018, 51, 790–795. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- D’Addona, D.M.; Ullah, A.S.; Matarazzo, D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. J. Intell. Manufac. 2015, 28, 1285–1301. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital Twin: Research Framework to Support Preventive Conservation Policies. ISPRS Int. J. Geo-Inf. 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Göçer, Ö.; Hua, Y.; Göçer, K. A BIM-GIS integrated pre-retrofit model for building data mapping. Build. Simul. 2016, 9, 513–527. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.H. Lessons learned from the Existing Building Energy Optimization workshop: An initiative for the analysis-driven retrofit decision making. KSCE J. Civ. Eng. 2017, 21, 1059–1068. [Google Scholar] [CrossRef]
- Agarwal, R.; Chandrasekaran, S.; Sridhar, M. Imagining Construction’s Digital Future; McKinsey & Company: Mumbai, India, 2016. [Google Scholar]
N/S | Name of Journal | Number of Selected Publications | Final Number of Relevant Publications | References |
---|---|---|---|---|
1 | Applied Sciences (Switzerland) | 7 | 5 | Sepasgozar [29], Porsani, de Lersundi, Gutiérrez and Bandera [30], Mannino, Dejaco and Re Cecconi [31], Coupry, Noblecourt, Richard, Baudry and Bigaud [32], Lee and Lee [33] |
2 | Automation in Construction | 14 | 10 | Boje, Guerriero, Kubicki and Rezgui [34], Love and Matthews [35], Pan and Zhang [36], Lu, Chen, Li and Pitt [37], Lu, Xie, Parlikad and Schooling [12], Pan and Zhang [38], Lee, Lee, Masoud, Krishnan and Li [39], Liang, Kamat and Menassa [40], Marocco and Garofolo [41], Jiang, Ma, Broyd and Chen [42] |
3 | Buildings | 1 | 1 | Sepasgozar [43] |
4 | Complexity | 2 | 1 | Liu, Sun, Yang and Gao [44] |
5 | Computers and Structures | 1 | 1 | Angjeliu, Coronelli and Cardani [45] |
6 | Computers in Industry | 1 | 1 | Greif, Stein and Flath [46] |
7 | Construction Innovation | 2 | 2 | Al-Saeed, Edwards and Scaysbrook [47], Bosch-Sijtsema, Claeson-Jonsson, Johansson and Roupe [48] |
8 | Energies | 4 | 4 | Agostinelli, Cumo, Guidi and Tomazzoli [49], Bass, New and Copeland [50], O’grady, Brajkovich, Minunno, Chong and Morrison [51], Demianenko and De Gaetani [52] |
9 | Energy and Buildings | 1 | 1 | Lydon, Caranovic, Hischier and Schlueter [53] |
10 | Engineering, Construction and Architectural Management | 1 | 1 | Sepasgozar, Ghobadi, Shirowzhan, Edwards and Delzendeh [54] |
11 | Frontiers in Built Environment | 1 | 1 | Kaewunruen and Xu [55] |
12 | IEEE Access | 9 | 2 | Camposano, Smolander and Ruippo [56], Broo and Schooling [57] |
13 | IEEE Transactions on Cybernetics | 1 | 1 | Chang, Zhang, Fu and Chen [58] |
14 | IEEE Transactions on Industrial Informatics | 2 | 1 | Turner, Oyekan, Stergioulas and Griffin [59] |
15 | International Journal of Construction Management | 1 | 1 | Rausch, Lu, Talebi and Haas [60] |
16 | International Journal of Safety and Security Engineering | 1 | 1 | Antonino, Nicola, Claudio, Luciano and Fulvio [61] |
17 | ISPRS Journal of Photogrammetry and Remote Sensing | 1 | 1 | Xue, Lu, Chen and Webster [62] |
18 | Journal of Advanced Transportation | 1 | 1 | Meža, Mauko Pranjić, Vezočnik, Osmokrović and Lenart [63] |
19 | Journal of Airport Management | 1 | 1 | Oliveira [64] |
20 | Journal of Asian Architecture and Building Engineering | 1 | 1 | Hasan, Lee, Moon, Kwon, Jinwoo and Lee [65] |
21 | Journal of Building Engineering | 3 | 3 | Opoku, Perera, Osei-Kyei and Rashidi [11], Tran, Nguyen, Christopher, Bui, Khoshelham and Ngo [66], Ozturk [19] |
22 | Journal of Cleaner Production | 4 | 3 | Kaewunruen and Lian [13], He, Li, Gan and Ma [67], Züst, Züst, Züst, West, Stoll and Minonne [68] |
23 | Journal of Engineering, Design and Technology | 1 | 1 | Babalola, Musa, Akinlolu and Haupt [69] |
24 | Journal of Information Technology in Construction | 3 | 3 | Deng, Menassa and Kamat [20], Alshammari, Beach and Rezgui [21], Akanmu, Anumba and Ogunseiju [70] |
25 | Journal of Management in Engineering | 3 | 2 | Lu, Parlikad, Woodall, Don Ranasinghe, Xie, Liang, Konstantinou, Heaton and Schooling [71], Lin and Cheung [14] |
26 | Journal of Testing and Evaluation | 1 | 1 | Steyn and Broekman [72] |
27 | Sensors | 1 | 1 | Liu, Meng, Xing and Jiang [73] |
28 | Smart and Sustainable Built Environment | 1 | 1 | Ogunseiju, Olayiwola, Akanmu and Nnaji [74] |
20 | Structure and Infrastructure Engineering | 2 | 2 | Shim, Dang, Lon and Jeon [75], Omer, Margetts, Hadi Mosleh, Hewitt and Parwaiz [76] |
30 | Sustainability (Switzerland) | 5 | 3 | Kaewunruen, Peng and Phil-Ebosie [77,78], Kaewunruen, Sresakoolchai, Ma and Phil-Ebosie [79] |
Total | 77 | 58 |
No. | Country or Region | Number of Selected Papers |
---|---|---|
1 | Multi-country* | 13 |
2 | United Kingdom | 9 |
3 | United States | 7 |
4 | Australia | 6 |
5 | Italy | 6 |
6 | Singapore | 2 |
7 | South Korea | 2 |
8 | Switzerland | 2 |
9 | Brazil | 1 |
10 | China | 1 |
11 | Finland | 1 |
12 | France | 1 |
13 | Germany | 1 |
14 | Hong Kong | 1 |
15 | Spain | 1 |
16 | Sweden | 1 |
17 | South Africa | 1 |
18 | Taiwan | 1 |
19 | Turkey | 1 |
20 | Total | 58 |
Code | Drivers for DT Adoption in CI | References | Sum |
---|---|---|---|
dr1 | Real-time data visualisation | [11,19,30,33,34,42,47,48,49,50,52,53,61,64,72,77,78,79] | 18 |
dr2 | Optimised construction process | [11,32,35,40,51,53,66,71,72] | 10 |
dr3 | Enhanced environmental monitoring | [11,14,20,29,34,43,50,54] | 8 |
dr4 | Safety risk management | [13,44,65,70,73,76,79] | 7 |
dr5 | Enhanced energy management | [11,19,20,30,49,50,52] | 7 |
dr6 | Continuous monitoring of assets | [11,21,34,45,63,70] | 6 |
dr7 | Reduce overall design process | [11,52,53,67,68] | 5 |
dr8 | Enhanced decision-making | [11,46,52,71,70] | 5 |
dr9 | Reduced construction cost | [11,33,47,53,65] | 5 |
dr10 | Enhanced predictive maintenance | [11,19,21,35,49] | 5 |
dr11 | Sustainability in project design | [11,45,50,52,57] | 5 |
dr12 | Encourage digital transformation | [34,48,64,78] | 4 |
dr13 | Improved design information delivery | [11,50,69,78] | 4 |
dr14 | Real-world asset management | [31,41,56,77] | 4 |
dr15 | Improved materials selection | [11,47,68] | 3 |
dr16 | Improved project’s operation efficiency | [11,49,61] | 3 |
dr17 | Enhance logistics monitoring and simulations | [33,34,46] | 3 |
dr18 | Automation and real-time control | [34,47,61] | 3 |
dr19 | Enabled smart services | [34,57,62] | 3 |
dr20 | Better project operational performance | [11,19,33] | 3 |
dr21 | Ensure effective project planning | [11,53] | 2 |
dr22 | Understand structural actions | [11,45] | 2 |
dr23 | Real-time networking of products and systems | [11,78] | 2 |
dr24 | Conserve heritage assets | [11,45] | 2 |
dr25 | Provide technical solutions | [50,71] | 2 |
dr26 | Reduced logistics risk | [33,46] | 2 |
dr27 | Better project management | [36,38] | 2 |
dr28 | Effective stakeholder collaboration | [11,39] | 2 |
dr29 | Finite elemental analysis of existing structures | [11,49] | 2 |
dr30 | Maintain occupants’ comfort | [19,20] | 2 |
dr31 | Improved product quality | [11,49] | 2 |
dr32 | Develop self-learning capabilities | [19,49] | 2 |
dr33 | Preserve cultural heritage | [42] | 1 |
dr34 | Enhanced building retrofit | [42] | 1 |
dr35 | Improved renovation works | [42] | 1 |
dr36 | Deliver new products or services | [56] | 1 |
dr37 | Creation of asset value | [56] | 1 |
dr38 | Output controlling of complex systems | [58] | 1 |
dr39 | Enhanced operational cost | [61] | 1 |
dr40 | Social support | [77] | 1 |
dr41 | Improved self-management ergonomic exposure | [74] | 1 |
dr42 | Enhanced prefabrication of assets | [60] | 1 |
dr43 | Reduced non-fatal injuries | [70] | 1 |
dr44 | Secure systems | [21] | 1 |
dr45 | Feedback to improve personal satisfaction | [21] | 1 |
dr46 | Effective stakeholder management | [11] | 1 |
dr47 | Improved management activities | [11] | 1 |
dr48 | Proactive and accurate status information | [11] | 1 |
dr49 | Improved climate conditions | [19] | 1 |
dr50 | Capacity of improving building data | [19] | 1 |
No. | Categories | Drivers | Code | Frequency | Mean | Rank |
---|---|---|---|---|---|---|
1.0 | Concept-oriented drivers | COD | 4.00 | 1st | ||
1.1 | Real-time data visualisation | cod1 | 18 | - | ||
1.2 | Reduce overall design process | cod2 | 5 | - | ||
1.3 | Enhanced decision-making | cod3 | 5 | - | ||
1.4 | Sustainability in project design | cod4 | 5 | - | ||
1.5 | Encourage digital transformation | cod5 | 4 | - | ||
1.6 | Improved design information delivery | cod6 | 4 | - | ||
1.7 | Improved materials selection | cod7 | 3 | - | ||
1.8 | Enabled smart services | cod8 | 3 | - | ||
1.9 | Ensure effective project planning | cod9 | 2 | - | ||
1.10 | Provide technical solutions | cod10 | 2 | - | ||
1.11 | Finite elemental analysis of existing structures | cod11 | 2 | - | ||
1.12 | Creation of asset value | cod12 | 1 | - | ||
1.13 | Social support | cod13 | 1 | - | ||
1.14 | Capacity of improving building data | cod14 | 1 | - | ||
2.0 | Operational success drivers | OSD | 3.13 | 2nd | ||
2.1 | Enhanced environmental monitoring | osd1 | 8 | - | ||
2.2 | Enhanced energy management | osd2 | 7 | - | ||
2.3 | Continuous monitoring of assets | osd3 | 6 | - | ||
2.4 | Enhanced predictive maintenance | osd4 | 5 | - | ||
2.5 | Real-world asset management | osd5 | 4 | - | ||
2.6 | Improved project’s operation efficiency | osd6 | 3 | - | ||
2.7 | Automation and real-time control | osd7 | 3 | - | ||
2.8 | Better project operational performance | osd8 | 3 | - | ||
2.9 | Real-time networking of products and systems | osd9 | 2 | - | ||
2.10 | Maintain occupants’ comfort | osd10 | 2 | - | ||
2.11 | Develop self-learning capabilities | osd11 | 2 | - | ||
2.12 | Enhanced operational cost | osd12 | 1 | - | ||
2.13 | Improved self-management ergonomic exposure | osd13 | 1 | - | ||
2.14 | Secure systems | osd14 | 1 | - | ||
2.15 | Feedback to improve personal satisfaction | osd15 | 1 | - | ||
2.16 | Improved climate conditions | osd16 | 1 | - | ||
3.0 | Production-driven drivers | PDD | 2.73 | 3rd | ||
3.1 | Optimise construction process | pdd1 | 10 | - | ||
3.2 | Safety risk management | pdd2 | 7 | - | ||
3.3 | Reduced construction cost | pdd3 | 5 | - | ||
3.4 | Enhance logistics monitoring and simulations | pdd4 | 3 | - | ||
3.5 | Understand structural actions | pdd5 | 2 | - | ||
3.6 | Reduced logistics risk | pdd6 | 2 | - | ||
3.7 | Improved product quality | pdd7 | 2 | - | ||
3.8 | Effective stakeholder collaboration | pdd8 | 2 | - | ||
3.9 | Deliver new products or services | pdd9 | 1 | - | ||
3.10 | Better project management | pdd10 | 2 | - | ||
3.11 | Output controlling of complex systems | pdd11 | 1 | - | ||
3.12 | Enhanced prefabrication of assets | pdd12 | 1 | - | ||
3.13 | Reduced non-fatal injuries | pdd13 | 1 | - | ||
3.14 | Improved management activities | pdd14 | 1 | - | ||
3.15 | Effective stakeholder management | pdd15 | 1 | - | ||
4.0 | Preservation-driven drivers | PRD | 1.20 | 4th | ||
4.1 | Conserve heritage assets | prd1 | 2 | - | ||
4.2 | Proactive and accurate status information | prd2 | 1 | - | ||
4.3 | Preserve cultural heritage | Prd3 | 1 | - | ||
4.4 | Enhanced building retrofit | Prd4 | 1 | - | ||
4.5 | Improved renovation works | Prd5 | 1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. https://doi.org/10.3390/buildings12020113
Opoku D-GJ, Perera S, Osei-Kyei R, Rashidi M, Famakinwa T, Bamdad K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings. 2022; 12(2):113. https://doi.org/10.3390/buildings12020113
Chicago/Turabian StyleOpoku, De-Graft Joe, Srinath Perera, Robert Osei-Kyei, Maria Rashidi, Tosin Famakinwa, and Keivan Bamdad. 2022. "Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review" Buildings 12, no. 2: 113. https://doi.org/10.3390/buildings12020113
APA StyleOpoku, D. -G. J., Perera, S., Osei-Kyei, R., Rashidi, M., Famakinwa, T., & Bamdad, K. (2022). Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings, 12(2), 113. https://doi.org/10.3390/buildings12020113