Critical Review of the Evolution of Project Delivery Methods in the Construction Industry
Abstract
:1. Introduction
- What research has been carried out on delivery methods, selection criteria and selection methods of delivery methods?
- What are the new selection criteria for project delivery methods highlighted post literature analysis?
- What are the features of the project delivery method that future research should focus on to fill the gaps in the literature?
2. Theoretical Background
2.1. Project Delivery Methods
2.2. Selection Criteria for Project Delivery Methods
2.3. Selection Methods of Project Delivery Methods
3. Research Methodology
3.1. Research Design
- Identification of review characteristics: The scope of the review focuses on the evolution of project delivery methods, selection criteria and selection models over the years. The database used to conduct this search was mainly Scopus, as it incorporates relevant sources of peer-reviewed studies.
- Screening: The research included only journal articles and books (conference papers were excluded) that were published in the English language with no specific time period to provide a comprehensive overview of the evolution of the construction industry and project delivery methods over the years. The search string used was “TITLE-ABS-KEY” using the keywords “project delivery methods” or “project delivery systems” and “construction”.
- Eligibility analysis: The first step is abstract analysis to evaluate if the paper fits the scope of the research, and if it does not fit, then it automatically gets excluded. After this, full-text analysis is done to select eligible documents.
- Data analysis and synthesis: The selected papers were first classified according to the publication date in order to determine whether they belong to the past or present or future stages of project delivery methods evolution. After this, the papers were categorized, whether they are empirical or conceptual studies. The selected studies were further analyzed to develop a list of 3 research targets: evolution of project delivery methods, evolution of project delivery selection criteria, evolution of project delivery selection models/methods.
3.2. Data Collection
3.3. Analysis
4. Results
4.1. PDM 4.0
4.2. Selection Criteria 4.0
4.3. Selection Methods 4.0
5. Discussion
6. Concluding Remarks and Recommendations
6.1. Concluding Remarks
- Despite the major changes in the selection criteria and models of project delivery methods over the years, there is still a profound lag between the rate of the evolution of the construction industry and the rate at which project delivery methods, selection criteria and selection models are being updated which creates a critical gap that needs to be bridged;
- PDM 4.0 represents features of a project delivery method which is characterized by digitally integrated and sustainably focused project delivery methods to meet the demands of the construction industry;
- Selection criteria 4.0 consists of new success factors such as sustainability goals, advanced technological innovations, health and wellbeing to be added to the success factors list in order to satisfy the needs of the construction industry;
- Selection methods 4.0 features smart decision models that exploit different and advanced aspects of artificial intelligence to fulfill the requirements of the digitally transformed construction industry and meet limitations such as projects interdependencies and time–cost tradeoffs.
6.2. Recommendations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oyetunji, A.; Anderson, D. Relative Effectiveness of Project Delivery and Contract Strategies. J. Constr. Eng. Manag. 2006, 132, 3–13. [Google Scholar] [CrossRef]
- El-Sayegh, S. Evaluating the effectiveness of project delivery methods. J. Constr. Manag. Econ. 2008, 23, 457–465. [Google Scholar]
- Hale, R.; Shrestha, P.; Gibson, G.; Migliaccio, C. Empirical Comparison of Design/Build and Design/Bid/Build Project Delivery Methods. J. Constr. Eng. Manag. 2009, 135, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Tenah, A. Project delivery systems for construction: An overview. Cost Eng 2001, 43, 30. [Google Scholar]
- Akpan, E.O.P.; Amade, B.; Okangba, B.; Ekweozor, C.O. Constructability practice and project delivery processes in the Nigerian construction industry. J. Build. Perform. 2014, 5, 10–21. [Google Scholar]
- Engebø, A.; Lædre, O.; Young, B.; Larssen, P.F.; Lohne, J.; Klakegg, O.J. Collaborative project delivery methods: A scoping review. J. Civ. Eng. Manag. 2020, 26, 278–303. [Google Scholar] [CrossRef]
- Pishdad, P.B.; Beliveau, Y.J. Analysis of existing project delivery and contracting strategy (PDCS) selection tools with a look towards emerging technology. In Proceedings of the 46th Annual International Associated school of Construction (AsC), Boston, MA, USA, 4–7 April 2010. [Google Scholar]
- Robichaud, B.; Anantatmula, S. Greening Project Management Practices for Sustainable Construction. J. Manag. Eng. 2011, 27, 48–57. [Google Scholar] [CrossRef]
- Osunsanmi, T.; Aigbavboa, C.; Oke, A. Construction 4.0: The future of the construction industry in South Africa. World Acad. Sci. Eng. Technol. Int. J. Civ. Env. Eng. 2018, 12, 206–212. [Google Scholar]
- Craveiroa, F.; Duartec, J.P.; Bartoloa, H.; Bartolod, P.J. Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Sustain. Dev. 2019, 12, 150–156. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Ng, W.J. Project management knowledge and skills for green construction: Overcoming challenges. Int. J. Proj. Manag. 2013, 31, 272–284. [Google Scholar] [CrossRef]
- Sims, B.L.; Anderson, W. Meeting Customer Expectations in the Construction Industry. Lead. Manag. Eng. 2001, 1, 29–32. [Google Scholar] [CrossRef]
- Friedlander, C. FEATURE: Design/Build Solutions. J. Manag. Eng. 1998, 14, 59–64. [Google Scholar] [CrossRef]
- Azhar, N.; Kang, Y.; Ahmad, I.U. Factors Influencing Integrated Project Delivery in Publicly Owned Construction Projects: An Information Modelling Perspective. Procedia Eng. 2014, 77, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, F. Project contract strategy for 1992 and beyond. Int. J. Proj. Manag 1989, 7, 69–83. [Google Scholar] [CrossRef]
- Teicholz, P.M.; Ashley, D.B. Optimal bid prices for unit price contract. J. Constr. Div. 1978, 104, 57–67. [Google Scholar]
- Gransberg, D.D.; Koch, J.A.; Molenaar, K.R. Preparing for Design-Build Projects: A Primer for Owners, Engineers, and Contractors; ASCE: Reston, VA, USA, 2006. [Google Scholar]
- Okere, G. Comparison of DB to DBB on highway projects in Washington State, USA. J. Constr. Supply Chain Manag. 2018, 8, 73–86. [Google Scholar] [CrossRef]
- Xia, B.; Chan, P.A.; Yeung, F.J. Developing a Fuzzy Multicriteria Decision-Making Model for Selecting Design-Build Operational Variations. J. Constr. Eng. Manag. 2011, 137, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Algarni, M.; Arditi, D.; Polat, G. Build-Operate-Transfer in Infrastructure Projects in the United States. J. Constr. Eng. Manag. 2007, 133, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Gould, F.E. Managing the Construction Process: Estimating, Scheduling, and Project Control; Prentice Hall: Boston, MA, USA, 2012. (In English) [Google Scholar]
- Rojas, M.; Kell, I. Comparative Analysis of Project Delivery Systems Cost Performance in Pacific Northwest Public Schools. J. Constr. Eng. Manag. 2008, 134, 387–397. [Google Scholar] [CrossRef]
- Carpenter, N.; Bausman, C. Project Delivery Method Performance for Public School Construction: Design-Bid-Build versus CM at Risk. J. Constr. Eng. Manag. 2016, 142, 05016009. [Google Scholar] [CrossRef] [Green Version]
- Azari-Najafabadi, R.; Ballard, G.; Cho, S.; Kim, Y.W. A Dream of Ideal Project Delivery System. In Proceedings of the AEI 2011: Building Integration Solutions, Oakland, CA, USA, 30 March–2 April 2012; pp. 427–436. [Google Scholar] [CrossRef]
- Al Mousli, M.H.; El-Sayegh, S. Assessment of the design–construction interface problems in the UAE. Arch. Eng. Des. Manag. 2016, 12, 353–366. [Google Scholar] [CrossRef]
- Eckblad, S.; Ashcraft, H.; Audsley, P.; Blieman, D.; Bedrick, J.; Brewis, C.; Stephens, N.D. Integrated Project Delivery—A Working Definition; AIA California Council: Sacramento, CA, USA, 2007. [Google Scholar]
- Azhar, N.; Kang, Y.; Ahmad, I. Critical Look into the Relationship between Information and Communication Technology and Integrated Project Delivery in Public Sector Construction. J. Manag. Eng. 2015, 31, 04014091. [Google Scholar] [CrossRef]
- Tatum, C.B. Issues in professional construction management. J. Constr. Eng. Manag. 1983, 109, 112–119. [Google Scholar] [CrossRef]
- Gallaher, M.; O’Connor, A.; Dettbarn, J.; Gilday, L. Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry (NIST GCR 04-867); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. [Google Scholar]
- Choi, J.; Yun, S.; Leite, F.; Mulva, S. Team Integration and Owner Satisfaction: Comparing Integrated Project Delivery with Construction Management at Risk in Health Care Projects. J. Manag. Eng. 2019, 35, 05018014. [Google Scholar] [CrossRef]
- David, C.; Becerik-Gerber, G. Understanding Construction Industry Experience and Attitudes toward Integrated Project Delivery. J. Constr. Eng. Manag. 2010, 136, 815–825. [Google Scholar] [CrossRef]
- AbouDargham, S.; Bou Hatoum, M.; Tohme, M.; Hamzeh, F. Implementation of Integrated Project Delivery in Lebanon: Overcoming the Challenges. In Proceedings of the 27th Annual Conference of the International. Group for Lean Construction, Dublin, Ireland, 1–9 July 2019; pp. 917–928. [Google Scholar] [CrossRef]
- Levitt, R. Towards project management 2.0. Eng. Proj. Organ. J. 2011, 1, 197–210. [Google Scholar] [CrossRef]
- El Asmar, M.; Hanna, A.; Loh, W.-Y. Quantifying Performance for the Integrated Project Delivery System as Compared to Established Delivery Systems. J. Constr. Eng. Manag. 2013, 139, 04013012. [Google Scholar] [CrossRef] [Green Version]
- Hanna, A. Benchmark Performance Metrics for Integrated Project Delivery. J. Constr. Eng. Manag. 2016, 142, 04016040. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Karimi, R.; Shirowzhan, S.; Mojtahedi, M.; Ebrahimzadeh, S.; McCarthy, D. Delay causes and emerging digital tools: A novel model of delay analysis, including integrated project delivery and PMBOK. Buildings 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Demetracopoulou, V.; O’Brien, W.; Khwaja, N. Lessons Learned from Selection of Project Delivery Methods in Highway Projects: The Texas Experience. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 04519040. [Google Scholar] [CrossRef]
- Ghosh, S.; Robson, K.F. Analyzing the Empire State Building Project from the Perspective of Lean Delivery System—A Descriptive Case Study. Int. J. Constr. Educ. Res 2015, 11, 257–267. [Google Scholar] [CrossRef]
- Lahdenperä, P. Making sense of the multi-party contractual arrangements of project partnering, project alliancing and integrated project delivery. Constr. Manag. Econ. 2012, 30, 57–79. [Google Scholar] [CrossRef]
- Konchar, M.; Sanvido, V. Comparison of U.S. Project Delivery Systems. J. Constr. Eng. Manag. 1998, 124, 435–444. [Google Scholar] [CrossRef]
- Alhazmi, T.; McCaffer, R. Project procurement system selection model. J. Constr. Eng. Manag 2000, 126, 176–184. [Google Scholar] [CrossRef]
- Kunz, A.; Ballard, H. Global Project Delivery Systems Using BIM. In Proceedings of the AEI 2011: Building Integration Solutions, Oakland, CA, USA, 30 March–2 April 2012; pp. 472–479. [Google Scholar] [CrossRef]
- Korkmaz, S.; Riley, D.; Horman, M. Piloting Evaluation Metrics for Sustainable High-Performance Building Project Delivery. J. Constr. Eng. Manag 2010, 136, 877–885. [Google Scholar] [CrossRef]
- Benson, L.; Bodniewicz, B.; Vittands, J.; Carr, J.; Watson, K. Innovative design-build procurement approach for large wastewater facility. Proc. Water Env. Fed. 2013, 2013, 7253–7269. [Google Scholar] [CrossRef]
- Giachino, J.; Cecil, M.; Husselbee, B.; Matthews, C. Alternative project delivery: Construction management at risk, design-build and public-private partnerships. Proc. Water Environ. Fed. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Mahdi, I.; Alreshaid, K. Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). Int. J. Proj. Manag 2005, 23, 564–572. [Google Scholar] [CrossRef]
- Tran, D.; Molenaar, K. Critical Risk Factors in Project Delivery Method Selection for Highway Projects. Constr. Res. Congr. 2012, 331–340. [Google Scholar] [CrossRef]
- Farnsworth, C.; Warr, R.; Weidman, J.; Mark, D. Effects of CM/GC Project Delivery on Managing Process Risk in Transportation Construction. J. Constr. Eng. Manag. 2016, 142, 04015091. [Google Scholar] [CrossRef]
- Al-Sobiei, O.S.; Arditi, D.; Polat, G. Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic algorithm (GA) techniques. Constr. Manag. Econ. 2005, 23, 423–430. [Google Scholar] [CrossRef]
- Gransberg, D.; Dillon, W.; Reynolds, L.; Boyd, J. Quantitative analysis of partnered project performance. J. Constr. Eng. Manag. 1999, 125, 161–166. [Google Scholar] [CrossRef]
- Loudoun, R.; Townsend, K. Implementing health promotion programs in the Australian construction industry. Eng. Constr. Arch. Manag. 2017, 24, 260–274. [Google Scholar] [CrossRef]
- Hanna, E.; Markham, S. Constructing better health and wellbeing? Understanding structural constraints on promoting health and wellbeing in the UK construction industry. Int. J. Workplace Health Manag. 2019, 12, 146–159. [Google Scholar] [CrossRef]
- Pooyan, M.-R. A Model for Selecting Project Delivery Systems in Post-Conflict Construction Projects. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2012. [Google Scholar]
- Cheung, S.-O.; Lam, T.-I.; Wan, Y.-W.; Lam, K.-C. Improving Objectivity in Procurement Selection. J. Manag. Eng. 2001, 17, 132–139. [Google Scholar] [CrossRef]
- Al-Sinan, F.M.; Hancher, D.E. Facility project delivery selection model. J. Manag. Eng. 1998, 4, 244–259. [Google Scholar] [CrossRef]
- Skitmore, M.; Marsden, D. Which procurement system? Towards a universal procurement selection technique. Constr. Manag. Econ. 1988, 6, 71–89. [Google Scholar]
- Al Khalil, M. Selecting the appropriate project delivery method using AHP. Int. J. Proj. Manag. 2002, 20, 469–474. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publ.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Ng, S.; Luu, D.; Chen, S.; Lam, K. Fuzzy membership functions of procurement selection criteria. Constr. Manag. Econ. 2002, 20, 285–296. [Google Scholar] [CrossRef]
- El-Abbasy, M.; Zayed, T.; Ahmed, M.; Alzraiee, H.; Abouhamad, M. Contractor Selection Model for Highway Projects Using Integrated Simulation and Analytic Network Process. J. Constr. Eng. Manag. 2013, 139, 755–767. [Google Scholar] [CrossRef]
- Khwaja, N.; O’Brien, W.; Martinez, M.; Sankaran, B.; O’Connor, J.; Hale, W. Innovations in Project Delivery Method Selection Approach in the Texas Department of Transportation. J. Manag. Eng. 2018, 34, 05018010. [Google Scholar] [CrossRef]
- Hartmann, A.; Love, P.E.D.; Ibbs, W.; Chih, Y. Alternative methods for choosing an appropriate project delivery system (PDS). Facilities 2011, 29, 527–541. [Google Scholar] [CrossRef]
- Yates, J.; Battersby, L. Master Builder Project Delivery System and Designer Construction Knowledge. J. Constr. Eng. Manag. 2003, 129, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Whyte, J. How digital information transforms project delivery models. Proj. Manag. J. 2019, 50, 177–194. [Google Scholar] [CrossRef]
- Paolillo, W.; Olson, B.; Straub, E. People centered innovation: Enabling lean integrated project delivery and disrupting the construction industry for a more sustainable future. J. Constr. Eng. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.W.; Fornell, C.; Lehmann, D.R. Customer satisfaction, market share, and profitability: Findings from Sweden. J. Mark. 1994, 58, 53–66. [Google Scholar] [CrossRef]
- Homburg, C.; Rudolph, B. Customer satisfaction in industrial markets: Dimensional and multiple role issues. J. Bus. Res. 2001, 52, 15–33. [Google Scholar] [CrossRef]
- Torbica, M.; Stroh, C. Customer Satisfaction in Home Building. J. Constr. Eng. Manag. 2001, 127, 82–86. [Google Scholar] [CrossRef]
- Kärnä, S.; Junnonen, J.-M.; Kankainen, J. Customer satisfaction in construction. In Proceedings of the 12th Annual Conference on Lean Construction, Helsingøv, Denmark, 3–5 August 2004; pp. 476–488. [Google Scholar]
- Raouf, A.; Al-Ghamdi, S. Effectiveness of Project Delivery Systems in Executing Green Buildings. J. Constr. Eng. Manag. 2019, 145, 03119005. [Google Scholar] [CrossRef]
- Sullivan, J.; Asmar, E.; Chalhoub, J.; Obeid, H. Two Decades of Performance Comparisons for Design-Build, Construction Manager at Risk, and Design-Bid-Build: Quantitative Analysis of the State of Knowledge on Project Cost, Schedule, and Quality. J. Constr. Eng. Manag. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Zuber, S.; Nawi, M.; Abdul Nifa, F.; Bahaudin, A. An overview of project delivery methods in construction industry. Int. J. Supply Chain Manag. 2018, 7, 177–182. [Google Scholar]
- Uhlik, F.T.; Eller, M.D. Alternative delivery approaches for military medical construction projects. J. Arch. Eng. 1999, 5, 149–155. [Google Scholar] [CrossRef]
- Steiman, H.; Hickey, T.; Callahan, N. Use and benefits of alternative capital project delivery strategies: Design-build and construction management at risk. J. N. Engl. Water Work. Assoc. 2010, 124, 7–18. [Google Scholar]
- Park, M.; Ji, S.H.; Lee, H.S.; Kim, W. Strategies for design-build in Korea using system dynamics modeling. J. Constr. Eng. Manag. 2009, 135, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, K.R.; Yakowenko, G. Alternative Project Delivery, Procurement, and Contracting Methods for Highways; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 1–155. [Google Scholar]
- Mulvey, D.L. Project delivery trends: A contractor’s assessment. J. Manag. Eng. 1998, 14, 51–54. [Google Scholar] [CrossRef]
- Retherford, N. FEATURE: Project Delivery and the US Department of State. J. Manag. Eng. 1998, 14, 55–58. [Google Scholar] [CrossRef]
- Kalach, M.; Abdul-Malak, M.A.; Srour, I. Architect and Engineer’s Spectrum of Engagement under Alternative Delivery Methods: Agreement Negotiation and Formation Implications. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12. [Google Scholar] [CrossRef]
- Brahim, J.; Latiffi, A.; Fathi, M.S. Application of building information modelling (bim) in design and build (D&B) projects in Malaysia. Malays. Constr. Res. J. 2018, 25, 29–41. [Google Scholar]
- Gad, G.M.; Adamtey, S.A.; Gransberg, D. Trends in quality management approaches to design-build transportation projects. Transp. Res. Rec. 2015, 2504, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Gransberg, D. Design/build in transportation from the research perspective. Lead. Manag. Eng. 2003, 3, 133–136. [Google Scholar] [CrossRef]
- Connor, M.C. Legal exposure in design/build contracts. Ashrae J. 2003, 45, 49. [Google Scholar]
- Lam, E.; Chan, A.; Chan, D. Potential problems of running design-build projects in construction. Hkie Trans. Hong Kong Inst. Eng. 2003, 10, 8–14. [Google Scholar] [CrossRef]
- Lahdenperä, P. Design-Build Procedures Introduction, Illustration and Comparison of U.S. Modes; VTT Publications: Espoo, Finland, 2001; pp. 2–155. [Google Scholar]
- Sweeney, N.J. Who pays for defective design? J. Manag. Eng. 1998, 14, 65–68. [Google Scholar] [CrossRef]
- Friedlander, M.C.; Roberts, K.M. Single entity option. Indep. Energy 1997, 27, 28–30. [Google Scholar]
- Kirschenman, M.D. Total project delivery systems. J. Manag. Eng. 1986, 2, 222–230. [Google Scholar] [CrossRef]
- Kanoglu, A. An integrated system for design/build firms to solve cost estimation problems in the design phase. Arch. Sci. Rev. 2003, 46, 37–47. [Google Scholar] [CrossRef]
- Gibson, G.E.; O’connor, J.T.; Migliaccio, G.; Walewski, J. Key implementation issues and lessons learned with design-build projects. In Alternative Project Delivery, Procurement, and Contracting Methods for Highways; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 1–19. [Google Scholar]
- Thomas, L.M.; Lester, H.D. Project delivery systems: Architecture/engineering/construction industry trends and their ramifications. In The Routledge Companion for Architecture Design and Practice: Established and Emerging Trends; Routledge: Abingdon, UK, 2016; pp. 429–436. [Google Scholar]
- Gard, P.T. Fast and innovative delivery of high performance building: Design-build delivers with less owner liability. Strat. Plan. Energy Environ. 2004, 23, 7–22. [Google Scholar] [CrossRef]
- Diekmann, J.E. Past perfect: Historical antecedents of modern construction practices. J. Constr. Eng. Manag. 2007, 133, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Gad, G.M.; Gransberg, D.; Loulakis, M. Policies and procedures for successful implementation of alternative technical concepts. Transp. Res. Rec. 2015, 2504, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.; Sidwell, A.C. Re-engineering the construction delivery process: The Museum of Tropical Queensland, Townsville—A Case Study. Constr. Innov. 2001, 1, 77–89. [Google Scholar] [CrossRef]
- Papajohn, D.; El Asmar, M. Impact of Alternative Delivery on the Response Time of Requests for Information for Highway Projects. J. Manag. Eng. 2020, 37. [Google Scholar] [CrossRef]
- Franz, B.; Molenaar, K.R.; Roberts, B.A.M. Revisiting project delivery system performance from 1998 to 2018. J. Constr. Eng. Manag. 2020, 146. [Google Scholar] [CrossRef]
- Moon, H.; Kim, K.; Lee, H.S.; Park, M.; Williams, T.P.; Son, B.; Chun, J.Y. Cost Performance Comparison of Design-Build and Design-Bid-Build for Building and Civil Projects Using Mediation Analysis. J. Constr. Eng. Manag. 2020, 146. [Google Scholar] [CrossRef]
- Noorzai, E. Performance Analysis of Alternative Contracting Methods for Highway Construction Projects: Case Study for Iran. J. Infrastruct. Syst. 2020, 26. [Google Scholar] [CrossRef]
- Abou Chakra, H.; Ashi, A. Comparative analysis of design/build and design/bid/build project delivery systems in Lebanon. J. Ind. Eng. Int. 2019, 15, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Arthur, A.; Alleman, D.; Molenaar, K. Examination of Project Duration, Project Intensity, and Timing of Cost Certainty in Highway Project Delivery Methods. J. Manag. Eng. 2019, 35, 04018049. [Google Scholar] [CrossRef]
- Adamtey, S.A. A Case Study Performance Analysis of Design-Build and Integrated Project Delivery Methods. Int. J. Constr. Educ. Res. 2019, 1–17. [Google Scholar] [CrossRef]
- Tran, D.; Diraviam, G.; Minchin, R.E. Performance of Highway Design-Bid-Build and Design-Build Projects by Work Types. J. Constr. Eng. Manag. 2018, 144, 04017112. [Google Scholar] [CrossRef]
- Shrestha, P.; Fernane, J. Performance of Design-Build and Design-Bid-Build Projects for Public Universities. J. Constr. Eng. Manag. 2017, 143, 04016101. [Google Scholar] [CrossRef]
- Park, H.-S.; Lee, D.; Kim, S.; Kim, J.-L. Comparing project performance of design-build and design-bid-build methods for large-sized public apartment housing projects in Korea. J. Asian Arch. Build. Eng. 2015, 14, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.; O’Connor, J.; Gibson, G.E. Performance Comparison of Large Design-Build and Design-Bid-Build Highway Projects. J. Constr. Eng. Manag. 2012, 138, 1–13. [Google Scholar] [CrossRef]
- Chasey, A.D.; Maddex, W.E.; Bansal, A. Comparison of public-private partnerships and traditional procurement methods in North American highway construction. Transp. Res. Rec. 2012, 2268, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Gransberg, D.; Molenaar, K. Critical Comparison of Progressive Design-Build and Construction Manager/General Contractor Project Delivery Methods. Transp. Res. Rec. 2019, 2673, 261–268. [Google Scholar] [CrossRef]
- Feghaly, J.; El Asmar, M.; Ariaratnam, S.T. State of Professional Practice for Water Infrastructure Project Delivery. Pr. Period. Struct. Des. Constr. 2020, 25. [Google Scholar] [CrossRef]
- Mehany, M.; Bashettiyavar, G.; Esmaeili, B.; Gad, G. Claims and Project Performance between Traditional and Alternative Project Delivery Methods. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2018, 10. [Google Scholar] [CrossRef]
- Ibrahim, M.W.; Hanna, A.; Kievet, D. Quantitative Comparison of Project Performance between Project Delivery Systems. J. Manag. Eng. 2020, 36. [Google Scholar] [CrossRef]
- Bypaneni, S.P.K.; Tran, D.Q. Empirical Identification and Evaluation of Risk in Highway Project Delivery Methods. J. Manag. Eng. 2018, 34. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Esmaeili, B.; Nasrollahi, S.; Gad, G.M.; Gransberg, D. Impact of Owners’ Early Decisions on Project Performance and Dispute Occurrence in Public Highway Projects. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- McWhirt, D.; Ahn, J.; Shane, J.S.; Strong, K.C. Military construction projects: Comparison of project delivery methods. J. Facil. Manag. 2011, 9, 157–169. [Google Scholar] [CrossRef]
- Koppinen, T.; Lahdenperä, P. Realized Economic Efficiency of Road Project Delivery Systems. J. Infrastruct. Syst. 2007, 13, 321–329. [Google Scholar] [CrossRef]
- Lahdenperä, P.; Koppinen, T. Financial analysis of road project delivery systems. J. Financ. Manag. Prop. Constr. 2009, 14, 61–78. [Google Scholar] [CrossRef]
- Ghavamifar, K.; Touran, A. Alternative Project Delivery Systems: Applications and Legal Limits in Transportation Projects. J. Prof. Issues Eng. Educ. Pr. 2008, 134, 106–111. [Google Scholar] [CrossRef]
- Bingham, E.; Gibson, G.; El Asmar, M. Identifying Team Selection and Alignment Factors by Delivery Method for Transportation Projects. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Francom, T.; Ariaratnam, S.T.; El Asmar, M. Industry perceptions of alternative project delivery methods applied to trenchless pipeline projects. J. Pipeline Syst. Eng. Pr. 2016, 7. [Google Scholar] [CrossRef]
- Chini, A.; Ptschelinzew, L.; Minchin, R.E.; Zhang, Y.; Shah, D. Industry Attitudes toward Alternative Contracting for Highway Construction in Florida. J. Manag. Eng. 2018, 34. [Google Scholar] [CrossRef]
- Ernzen, J.; Schexnayder, C.; Flora, G. Design-Build Effects on a Construction Company: A Case Study. Transp. Res. Rec. 1999, 1654, 181–187. [Google Scholar] [CrossRef]
- Shrestha, P.; Maharajan, R.; Batista, J.R.; Shakya, B. Comparison of Utility Managers’ and Project Managers’ Satisfaction Rating of Alternative Project Delivery Methods Used in Water and Wastewater Infrastructures. Public Work. Manag. Policy 2015, 21, 263–279. [Google Scholar] [CrossRef]
- Koppinen, T.; Lahdenperä, P. Road Sector Experiences on Project Delivery Methods; VTT Tiedotteita—Valtion Teknillinen Tutkimuskeskus; VTT: Espoo, Finland, 2004; pp. 3–216. [Google Scholar]
- Koppinen, T.; Lahdenperä, P. The Current and Future Performance of Road Project Delivery Methods; VTT Publications: Espoo, Finland, 2004. [Google Scholar]
- Bilec, M.; Ries, R. Preliminary Study of Green Design and Project Delivery Methods in the Public Sector. J. Green Build. 2007, 2, 151–160. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Bogus, S.M.; Priestley, J.M. Design/build for water/wastewater facilities: State of the industry survey and three case studies. J. Manag. Eng. 2004, 20, 16–24. [Google Scholar] [CrossRef]
- Sindhu, J.; Choi, K.; Lavy, S.; Rybkowski, Z.K.; Bigelow, B.F.; Li, W. Effects of Front-End Planning under Fast-Tracked Project Delivery Systems for Industrial Projects. Int. J. Constr. Educ. Res. 2018, 14, 163–178. [Google Scholar] [CrossRef]
- Signore, A. Design/build project delivery method: Strategic opportunities for pharmaceutical facilities. Pharm. Eng. 1998, 18, 84–90. [Google Scholar]
- Feghaly, J.; El Asmar, M.; Ariaratnam, S.; Bearup, W. Design-Build Project Administration Practices for the Water Industry. J. Pipeline Syst. Eng. Pr. 2020, 12. [Google Scholar] [CrossRef]
- Tran, D.Q.; Nguyen, L.D.; Faught, A. Examination of communication processes in design-build project delivery in building construction. Eng. Constr. Arch. Manag. 2017, 24, 1319–1336. [Google Scholar] [CrossRef]
- Vashani, H.; Sullivan, J.; El Asmar, M. DB 2020: Analyzing and forecasting design-build market trends. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Ramsey, D.; El Asmar, M.; Gibson, G.E. Quantitative performance assessment of single-step versus two-step design-build procurement. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Antoine, A.L.C.; Molenaar, K.R. Empirical study of the state of the practice in alternative technical concepts in highway construction projects. Transp. Res. Rec. 2016, 2573, 143–148. [Google Scholar] [CrossRef]
- Chang, A.S.; Shen, F.Y.; Ibbs, W. Design and construction coordination problems and planning for design-build project new users. Can. J. Civ. Eng. 2010, 37, 1525–1534. [Google Scholar] [CrossRef]
- El Asmar, M.; Lotfallah, W.; Whited, G.; Hanna, A.S. Quantitative methods for design-build team selection. J. Constr. Eng. Manag. 2010, 136, 904–912. [Google Scholar] [CrossRef]
- Gransberg, D.; Senadheera, S.P. Design-build contract award methods for transportation projects. J. Transp. Eng. 1999, 125, 565–567. [Google Scholar] [CrossRef]
- Flora, G.; Ernzen, J.J.; Schexnayder, C. Field-level management’s perspective of design/build. Pr. Period. Struct. Des. Constr. 1998, 3, 180–185. [Google Scholar] [CrossRef]
- Tran, D.Q.; Harper, C.M.; Smadi, A.M.; Mohamed, M. Staffing needs and utilization for alternative contracting methods in highway design and construction. Eng. Constr. Arch. Manag. 2020, 27, 2163–2178. [Google Scholar] [CrossRef]
- Tran, D.Q.; Molenaar, K.R.; Alarcön, L.F. A hybrid cross-impact approach to predicting cost variance of project delivery decisions for highways. J. Infrastruct. Syst. 2016, 22. [Google Scholar] [CrossRef]
- Lam, E.W.M.; Chan, A.P.C.; Chan, D.W.M. Development of the design-build procurement system in Hong Kong. Arch. Sci. Rev. 2004, 47, 387–397. [Google Scholar] [CrossRef]
- Arditi, D.; Lee, D.E. Assessing the corporate service quality performance of design-build contractors using quality function deployment. Constr. Manag. Econ. 2003, 21, 175–185. [Google Scholar] [CrossRef]
- Ling, F.Y.Y.; Chan, S.L.; Chong, E.; Ee, L.P. Predicting performance of design-build and design-bid-build projects. J. Constr. Eng. Manag. 2004, 130, 75–83. [Google Scholar] [CrossRef]
- Lee, D.E.; Arditi, D. Total quality performance of design/build firms using quality function deployment. J. Constr. Eng. Manag. 2006, 132, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.Y. Grouping decomposition under constraints for design/build life cycle in project delivery system. Int. J. Technol. Manag. 2009, 48, 168–187. [Google Scholar] [CrossRef]
- Kaplin, J.; Conley, J. Construction management-at-risk as a delivery method for water projects. J. N. Engl. Water Work. Assoc. 2010, 124, 219–226. [Google Scholar]
- Kantola, M.; Saari, A. Project delivery systems for nZEB projects. Facility 2016, 34, 85–100. [Google Scholar] [CrossRef]
- Shane, J.S.; Gransberg, D. Coordination of design contract with construction manager-at-risk preconstruction service contract. Transp. Res. Rec. 2010, 2151, 55–59. [Google Scholar] [CrossRef]
- Francom, T.; El Asmar, M.; Ariaratnam, S.T. Longitudinal study of construction manager at risk for pipeline rehabilitation. J. Pipeline Syst. Eng. Pr. 2017, 8. [Google Scholar] [CrossRef]
- Francom, T.; El Asmar, M.; Ariaratnam, S.T. Performance Analysis of Construction Manager at Risk on Pipeline Engineering and Construction Projects. J. Manag. Eng. 2016, 32. [Google Scholar] [CrossRef]
- Bilbo, D.; Bigelow, B.; Escamilla, E.; Lockwood, C. Comparison of Construction Manager at Risk and Integrated Project Delivery Performance on Healthcare Projects: A Comparative Case Study. Int. J. Constr. Educ. Res. 2015, 11, 40–53. [Google Scholar] [CrossRef]
- Shrestha, P.; Davis, B.; Gad, G.M. Investigation of Legal Issues in Construction-Manager-at-Risk Projects: Case Study of Airport Projects. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12. [Google Scholar] [CrossRef]
- Minchin, R.E.; Thakkar, K.; Ellis, R.D. Miami intermodal center-introducing “CM-at-Risk” to transportation construction. In Alternative Project Delivery, Procurement, and Contracting Methods for Highways; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 46–59. [Google Scholar]
- West, N.; Gransberg, D.; McMinimee, J. Effective tools for projects delivered by construction manager-general contractor method. Transp. Res. Rec. 2012, 2268, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kluenker, C.H. Construction manager as project integrator. J. Manag. Eng. 1996, 12, 17–20. [Google Scholar] [CrossRef]
- Diab, M.; Gebken, R.J.; Mehany, M.S.H. Strategies to Leverage Contractor Experience. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12. [Google Scholar] [CrossRef]
- Gransberg, D. Comparing construction manager-general contractor and federal early contractor involvement project delivery methods. Transp. Res. Rec. 2016, 2573, 18–25. [Google Scholar] [CrossRef]
- Khalafallah, A.; Fahim, A. Project delivery systems for healthcare projects: To lean or not to lean. Lean Constr. J. 2018, 2018, 47–62. [Google Scholar]
- Kartam, N.A.; Al-Daihani, T.G.; Al-Bahar, J.F. Professional project management practices in Kuwait: Issues, difficulties and recommendations. Int. J. Proj. Manag. 2000, 18, 281–296. [Google Scholar] [CrossRef]
- Zuber, S.Z.S.; Nawi, N.M.; Nifa, F.A.A. Construction procurement practice: A review study of integrated project delivery (IPD) in the Malaysian construction projects. Int. J. Suppl. Chain Manag. 2019, 8, 777–783. [Google Scholar]
- Boon, L.H.; Saar, C.C.; Lau, S.E.N.; Aminudin, E.; Zakaria, R.; Hamid, A.R.A.; Sarbini, N.N.; Zin, R.M. Building information modelling integrated project delivery system in Malaysia. Malays. Constr. Res. J. 2019, 6, 144–152. [Google Scholar]
- Widjaja, K. Sustainable design in project delivery: A discussion on current and future trends. J. Green Build. 2016, 11, 39–56. [Google Scholar] [CrossRef]
- Mesa, H.A.; Molenaar, K.R.; Alarcón, L.F. Comparative analysis between integrated project delivery and lean project delivery. Int. J. Proj. Manag. 2019, 37, 395–409. [Google Scholar] [CrossRef]
- Mesa, H.A.; Molenaar, K.R.; Alarcón, L.F. Exploring performance of the integrated project delivery process on complex building projects. Int. J. Proj. Manag. 2016, 34, 1089–1101. [Google Scholar] [CrossRef]
- Ling, F.Y.Y.; Teo, P.X.; Li, S.; Zhang, Z.; Ma, Q. Adoption of Integrated Project Delivery Practices for Superior Project Performance. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12. [Google Scholar] [CrossRef]
- Engebø, A.; Klakegg, O.J.; Lohne, J.; Lædre, O. A collaborative project delivery method for design of a high-performance building. Int. J. Manag. Proj. Bus. 2020, 13, 1141–1165. [Google Scholar] [CrossRef]
- Singleton, M.S.; Hamzeh, F.R. Implementing integrated project delivery on department of the navy construction projects. Lean Constr. J. 2011, 2011, 17–31. [Google Scholar]
- Rosayuru, H.; Waidyasekara, K.; Wijewickrama, M. Sustainable BIM based integrated project delivery system for construction industry in Sri Lanka. Int. J. Constr. Manag. 2019, 1–15. [Google Scholar] [CrossRef]
- El Asmar, M.; Hanna, A.S.; Loh, W.Y. Evaluating integrated project delivery using the project quarterback rating. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Piroozfar, P.; Farr, E.R.P.; Zadeh, A.H.M.; Timoteo, I.; Kilgallon, S.; Jin, R. Facilitating Building Information Modelling (BIM) using Integrated Project Delivery (IPD): A UK perspective. J. Build. Eng. 2019, 26, 100907. [Google Scholar] [CrossRef]
- Cho, S.; Ballard, G. Last planner and integrated project delivery. Lean Constr. J. 2011, 2011, 67–73. [Google Scholar]
- Teng, Y.; Li, X.; Wu, P.; Wang, X. Using cooperative game theory to determine profit distribution in IPD projects. Int. J. Constr. Manag. 2019, 19, 32–45. [Google Scholar] [CrossRef]
- Laurent, J.; Leicht, R.M. Practices for Designing Cross-Functional Teams for Integrated Project Delivery. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Osman, W.N.; Nawi, M.N.M.; Zulhumadi, F.; Shafie, M.W.M.; Ibrahim, F.A. Individual readiness of construction stakeholders to implement integrated project delivery (IPD). J. Eng. Sci. Technol. 2017, 12, 229–238. [Google Scholar]
- Johnson, T.R.; Feng, P.; Sitzabee, W.; Jernigan, M. Federal acquisition regulation applied to alliancing contract practices. J. Constr. Eng. Manag. 2013, 139, 480–487. [Google Scholar] [CrossRef]
- Walker, D.; Hampson, K. Procurement Choices. In Procurement Strategies: A Relationship-Based Approach; Blackwell Science Ltd.: Hpboken, NJ, USA, 2008; pp. 11–29. [Google Scholar]
- Fernandes, D.A.; Costa, A.A.; Lahdenperä, P. Key features of a project alliance and their impact on the success of an apartment renovation: A case study. Int. J. Constr. Manag. 2018, 18, 482–496. [Google Scholar] [CrossRef]
- Hauck, A.J.; Walker, D.H.T.; Hampson, K.D.; Peters, R.J. Project alliancing at national museum of Australia—Collaborative process. J. Constr. Eng. Manag. 2004, 130, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Heidemann, A.; Gehbauer, F. The way towards cooperative project delivery. J. Financ. Manag. Prop. Constr. 2011, 16, 19–30. [Google Scholar] [CrossRef]
- Rahmani, F. Challenges and opportunities in adopting early contractor involvement (ECI): Client’s perception. Arch. Eng. Des. Manag. 2020, 1–20. [Google Scholar] [CrossRef]
- Sagvekar, S.; Wayal, A.S. Early contractor involvement (ECI): Indian scenario of construction project delivery. Int. J. Sci. Technol. Res. 2019, 8, 807–811. [Google Scholar]
- Scheepbouwer, E.; Humphries, A.B. Transition in adopting project delivery method with early contractor involvement. Transp. Res. Rec. 2011, 2228, 44–50. [Google Scholar] [CrossRef]
- Bolton, B.; Heller, J. Effective airport project delivery, leadership and culture. J. Airpt. Manag. 2019, 13, 6–16. [Google Scholar]
- Vilasini, N.; Neitzert, T.R.; Rotimi, J.O. Correlation between construction procurement methods and lean principles. Int. J. Constr. Manag. 2011, 11, 65–78. [Google Scholar] [CrossRef]
- Balzani, M.; Raco, F.; Zaffagnini, T. Learning for placement fostering innovation in the construction sector through public-private partnership in the Emilia-Romagna region. Turk. Online J. Educ. Technol. 2017, 2017, 404–410. [Google Scholar]
- Ptschelinzew, L.; Minchin, R.E.; Chini, A.; Zhang, Y. Relationship Management Strategies for Identifying Party Discord and Misperceptions. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12. [Google Scholar] [CrossRef]
- Ngoma, S.; Mundia, M.; Kaliba, C. Benefits, constraints and risks in infrastructure development via public-private partnerships in Zambia. J. Constr. Dev. Ctries. 2014, 19, 15–33. [Google Scholar]
- Gajurel, A. Performance-Based Contracts for Road Projects: Comparative Analysis of Different Types; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–159. [Google Scholar]
- Kantola, M.; Saari, A. Ensuring functionality of a nearly zero-energy building with procurement methods. Facility 2014, 32, 312–323. [Google Scholar] [CrossRef]
- Barlow, J.; Köberle-Gaiser, M. The private finance initiative, project form and design innovation. The UK’s hospitals programme. Res. Policy 2008, 37, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Brioso, X.; Aguilar, R.; Calderón-Hernandez, C. Synergies Between Lean Construction and Management of Heritage Structures and Conservation Strategies—A General Overview; RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2019; Volume 18, pp. 2142–2149. [Google Scholar]
- Ballard, G. The lean project delivery system: An update. Lean Constr. J. 2008, 2008, 1–19. [Google Scholar]
- Moaveni, S.; Banihashemi, S.Y.; Mojtahedi, M. A conceptual model for a safety-based theory of lean construction. Building 2019, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Darrington, J. Using a design-build contract for lean integrated project delivery. Lean Constr. J. 2011, 2011, 85–91. [Google Scholar]
- Koskela, L.; Howell, G.; Ballard, G.; Tommelein, I. The foundations of lean construction. Des. Constr. 2007, 291, 211–226. [Google Scholar]
- Forbes, L.H.; Ahmed, S.M. Modern Construction: Lean Project Delivery and Integrated Practices; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–491. [Google Scholar]
- Brioso, X.; Calderón, C.; Aguilar, R.; Pando, M.A. Preliminary Methodology for the Integration of Lean Construction, BIM and Virtual Reality in the Planning Phase of Structural Intervention in Heritage Structures; RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2019; Volume 18, pp. 484–492. [Google Scholar]
- Schultz, R.; Sarfaraz, A.; Jenab, K. Analysis of risk and reliability in project delivery methods. In Transportation Systems and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2015; Volume 2–3, pp. 612–622. [Google Scholar]
- Brioso, X.; Humero, A.; Murguia, D.; Corrales, J.; Aranda, J. Using post-occupancy evaluation of housing projects to generate value for municipal governments. Alex. Eng. J. 2018, 57, 885–896. [Google Scholar] [CrossRef]
- Lapinski, A.R.; Horman, M.J.; Riley, D.R. Lean processes for sustainable project delivery. J. Constr. Eng. Manag. 2006, 132, 1083–1091. [Google Scholar] [CrossRef]
- Klotz, L.; Horman, M.; Bodenschatz, M. A lean modeling protocol for evaluating green project delivery. Lean Constr. J. 2007, 3, 1–18. [Google Scholar]
- Hwang, B.-G.; Lim, E.S.J. Critical Success Factors for Key Project Players and Objectives: Case Study of Singapore. J. Constr. Eng. Manag. 2013, 139, 204–215. [Google Scholar] [CrossRef]
- Feghaly, J.; El Asmar, M.; Ariaratnam, S.; Bearup, W. Selecting project delivery methods for water treatment plants. Eng. Constr. Arch. Manag. 2019, 27, 936–951. [Google Scholar] [CrossRef]
- Bingham, E.; Gibson, G.E.; Asmar, M.E. Measuring User Perceptions of Popular Transportation Project Delivery Methods Using Least Significant Difference Intervals and Multiple Range Tests. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Qiang, M.; Wen, Q.; Jiang, H.; Yuan, S. Factors governing construction project delivery selection: A content analysis. Int. J. Proj. Manag. 2015, 33, 1780–1794. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Liu, H. Design framework for construction project delivery systems. Tech. Technol. Educ. Manag. 2010, 5, 847–852. [Google Scholar]
- Chen, Y.Q.; Lu, H.; Lu, W.; Zhang, N. Analysis of project delivery systems in Chinese construction industry with data envelopment analysis (DEA). Engineering, Construction and Architectural Management 2010, 17, 598–614. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Liang, Y.; Sun, Y.; Hu, X. Key Factors of Project Characteristics Affecting Project Delivery System Decision Making in the Chinese Construction Industry: Case Study Using Chinese Data Based on Rough Set Theory. J. Prof. Issues Eng. Educ. Pr. 2016, 142. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Shen, Q.; Yang, Z.; Meng, J.; Xue, B. Which owner characteristics are key factors affecting project delivery system decision making? Empirical analysis based on the rough set theory. J. Manag. Eng. 2015, 31, 05014018. [Google Scholar] [CrossRef]
- Ding, J.; Wang, N.; Hu, L. Framework for Designing Project Delivery and Contract Strategy in Chinese Construction Industry Based on Value-Added Analysis. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Lewis, T.M.; Petersen, A. Factors affecting the choice of construction project delivery in developing oil and gas economies. Arch. Eng. Des. Manag. 2016, 12, 170–188. [Google Scholar] [CrossRef]
- Touran, A.; Gransberg, D.; Molenaar, K.; Ghavamifar, K. Selection of project delivery method in transit: Drivers and objectives. J. Manag. Eng. 2011, 27, 21–27. [Google Scholar] [CrossRef]
- Alleman, D.; Antoine, A.; Stanford, M.S.; Molenaar, K. Project Delivery Methods’ Change-Order Types and Magnitudes Experienced in Highway Construction. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 04520006. [Google Scholar] [CrossRef]
- Li, H.; Arditi, D.; Wang, Z. Factors that affect transaction costs in construction projects. J. Constr. Eng. Manag. 2013, 139, 60–68. [Google Scholar] [CrossRef]
- Sirbovan, B.; DiProspero, D.; Larson, B. Primer of design and construction delivery methods for today’s modern pharmaceutical and biotech facilities. Pharm. Eng. 2006, 26, 8–18. [Google Scholar]
- Creedy, G.D.; Skitmore, M.; Wong, J.K.W. Evaluation of risk factors leading to cost overrun in delivery of highway construction projects. J. Constr. Eng. Manag. 2010, 136, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Franz, B.; Leicht, R.; Molenaar, K.; Messner, J. Impact of Team Integration and Group Cohesion on Project Delivery Performance. J. Constr. Eng. Manag. 2017, 143, 04016088. [Google Scholar] [CrossRef]
- Mafakheri, F.; Dai, L.; Slezak, D.; Nasiri, F. Project delivery system selection under uncertainty: Multicriteria multilevel decision aid model. J. Manag. Eng. 2007, 23, 200–206. [Google Scholar] [CrossRef]
- Kumaraswamy, M.M.; Dissanayaka, S.M. Developing a decision support system for building project procurement. Build. Env. 2001, 36, 337–349. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Songer, A.D. Model for public sector design-build project selection. J. Constr. Eng. Manag. 1998, 124, 467–479. [Google Scholar] [CrossRef]
- Aldossari, K.M.; Lines, B.C.; Smithwick, J.B.; Hurtado, K.C.; Sullivan, K.T. Best practices of organizational change for adopting alternative project delivery methods in the AEC industry. Eng. Constr. Archit. Manag. 2020. [Google Scholar] [CrossRef]
- Moradi, S.; Kähkönen, K.; Aaltonen, K. Project Managers’ Competencies in Collaborative Construction Projects. Buildings 2020, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Cho, K.; Hong, T.; Hyun, C. Selection Model for Delivery Methods for Multifamily-Housing Construction Projects. J. Manag. Eng. 2011, 27, 106–115. [Google Scholar] [CrossRef]
- Liu, B.; Xue, B.; Huo, T.; Shen, G.; Fu, M. Project external environmental factors affecting project delivery systems selection. J. Civ. Eng. Manag. 2019, 25, 276–286. [Google Scholar] [CrossRef]
- Ding, X.; Sheng, Z.; Du, J.; Li, Q. Computational experiment study on selection mechanism of project delivery method based on complex factors. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Ibbs, C.W.; Kwak, Y.; Ng, T.; Odabasi, A.M. Project Delivery Systems and Project Change: Quantitative Analysis. J. Constr. Eng. Manag. 2003, 129, 382–387. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Pearce, A.R.; Holley, P.W. Project delivery system for foreign manufacturers in the United States. Int. J. Constr. Educ. Res. 2009, 5, 149–166. [Google Scholar] [CrossRef]
- Lines, B.C.; Ravi, K. Developing More Competitive Proposals: Relationship between Contractor Qualifications-Based Proposal Content and Owner Evaluation Scores. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Mollaoglu-Korkmaz, S.; Swarup, L.; Riley, D. Delivering Sustainable, High-Performance Buildings: Influence of Project Delivery Methods on Integration and Project Outcomes. J. Manag. Eng. 2013, 29, 71–78. [Google Scholar] [CrossRef]
- Montalbán-Domingo, L.; García-Segura, T.; Amalia, S.; Pellicer, E. Social Sustainability in Delivery and Procurement of Public Construction Contracts. J. Manag. Eng. 2019, 35, 04018065. [Google Scholar] [CrossRef]
- Yun, S.; Jung, W. Benchmarking sustainability practices use throughout industrial construction project delivery. Sustainability 2017, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Luu, D.T.; Ng, S.T.; Chen, S.E. Formulating procurement selection criteria through case-based reasoning approach. J. Comput. Civ. Eng. 2005, 19, 269–276. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E. A case-based procurement advisory system for construction. Adv. Eng. Softw. 2003, 34, 429–438. [Google Scholar] [CrossRef]
- Mostafavi, A.; Karamouz, M. Selecting Appropriate Project Delivery System: Fuzzy Approach with Risk Analysis. J. Constr. Eng. Manag. 2010, 136, 923–930. [Google Scholar] [CrossRef]
- Lee, Z.P.; Rahman, R.A.; Doh, S.I. Key drivers for adopting design build: A comparative study between project stakeholders. Phys. Chem. Earth Parts A/B/C 2020, 120, 102945. [Google Scholar] [CrossRef]
- El-Said, M.; El-Dokhmaesy, A.; Younis, M.E. Integrated project delivery and associated risk reduction in construction projects in Egypt. J. Eng. Appl. Sci. 2019, 66, 837–859. [Google Scholar]
- Tran, D.Q.; Molenaar, K.R. Exploring critical delivery selection risk factors for transportation design and construction projects. Eng. Constr. Arch. Manag. 2014, 21, 631–647. [Google Scholar] [CrossRef]
- Tran, D.Q.; Molenaar, K.R. Impact of risk on design-build selection for highway design and construction projects. J. Manag. Eng. 2014, 30, 153–162. [Google Scholar] [CrossRef]
- Osipova, E.; Eriksson, P.E. How procurement options influence risk management in construction projects. Constr. Manag. Econ. 2011, 29, 1149–1158. [Google Scholar] [CrossRef]
- Jefferies, M.; Brewer, G.J.; Gajendran, T. Using a case study approach to identify critical success factors for alliance contracting. Eng. Constr. Arch. Manag. 2014, 21, 465–480. [Google Scholar] [CrossRef]
- Gordon, C. Choosing Appropriate Construction Contracting Method. J. Constr. Eng. Manag. 1994, 120, 196–210. [Google Scholar] [CrossRef]
- Meshref, A.N.; Elkasaby, E.A.; Wageh, O. Innovative reliable approach for optimal selection for construction infrastructures projects delivery systems. Innov. Infrastruct. Solut. 2020, 5. [Google Scholar] [CrossRef]
- Popic, Z.; Moselhi, O. Project Delivery Systems Selection for Capital Projects Using the Analytical Hierarchy Process and the Analytical Network Process. Constr. Res. Congr 2014, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In International Series in Operations Research and Management Science; Springer: New York, NY, USA, 2016; Volume 233, pp. 363–419. [Google Scholar]
- Marzouk, M.; Elmesteckawi, L. Analyzing procurement route selection for electric power plants projects using SMART. J. Civ. Eng. Manag. 2015, 21, 912–922. [Google Scholar] [CrossRef]
- Li, H.; Qin, K.; Li, P. Selection of project delivery approach with unascertained model. Kybernetes 2015, 44, 238–252. [Google Scholar] [CrossRef]
- Khanzadi, M.; Nasirzadeh, F.; Hassani, S.M.H.; Mohtashemi, N.N. An integrated fuzzy multi-criteria group decision making approach for project delivery system selection. Sci. Iran. 2016, 23, 802–814. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, H.; Su, L. Decision-making for project delivery system with related-indicators based on pythagorean fuzzy weighted muirhead mean operator. Information 2020, 11, 451. [Google Scholar] [CrossRef]
- An, X.; Wang, Z.; Li, H.; Ding, J. Project Delivery System Selection with Interval-Valued Intuitionistic Fuzzy Set Group Decision-Making Method. Group Decis. Negot. 2018, 27, 689–707. [Google Scholar] [CrossRef]
- Su, L.; Li, H.; Cao, Y.; Lv, L. Project delivery system decision making using pythagorean fuzzy TOPSIS. Eng. Econ. 2019, 30, 461–471. [Google Scholar] [CrossRef]
- Liu, X.; Qian, F.; Lin, L.; Zhang, K.; Zhu, L. Intuitionistic fuzzy entropy for group decision making of water engineering project delivery system selection. Entropy 2019, 21, 101. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Lewis, T.; Petersen, A.; Peters, E. Cloudy with a Chance of Fuzzy: Building a Multicriteria Uncertainty Model for Construction Project Delivery Selection. J. Comput. Civ. Eng. 2017, 31, 04016046. [Google Scholar] [CrossRef]
- Nguyen, P.; Tran, D.Q.; Lines, B.C. Empirical Inference System for Highway Project Delivery Selection Using Fuzzy Pattern Recognition. J. Constr. Eng. Manag. 2020, 146, 12. [Google Scholar] [CrossRef]
- Tsai, T.C.; Yang, M.L. Risk assessment of design-bid-build and design-build building projects. J. Oper. Res. Soc. Jpn. 2010, 53, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.W.; Zhou, L.N.; Li, L.; Ali, W. Decision simulation of construction project delivery system under the sustainable construction project management. Sustainability 2020, 12, 2202. [Google Scholar] [CrossRef] [Green Version]
- Francis, A. Simulating Uncertainties in Construction Projects with Chronographical Scheduling Logic. J. Constr. Eng. Manag. 2017, 143. [Google Scholar] [CrossRef]
- Gil, N.; Tommelein, I.D.; Ballard, G. Theoretical comparison of alternative delivery systems for projects in unpredictable environments. Constr. Manag. Econ. 2004, 22, 495–508. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Liu, J.Y.; Li, B.; Lin, B. Project delivery system selection of construction projects in China. Expert Syst. Appl. 2011, 38, 5456–5462. [Google Scholar] [CrossRef]
- Kumaraswamy, M.M. Industry development through creative project packaging and integrated management. Eng. Constr. Arch. Manag. 1998, 5, 229–237. [Google Scholar]
- Ling, F.Y.Y.; Liu, M. Using neural network to predict performance of design-build projects in Singapore. Build. Env. 2004, 39, 1263–1274. [Google Scholar] [CrossRef]
- Flood, I. Towards the next generation of artificial neural networks for civil engineering. Adv. Eng. Inf. 2008, 22, 4–14. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Songer, A.D. Web-based decision support systems: Case study in project delivery. J. Comput. Civ. Eng. 2001, 15, 259–267. [Google Scholar] [CrossRef]
- Luu, D.T.; Ng, S.T.; Chen, S.E. Parameters governing the selection of procurement system–an empirical survey. Eng. Constr. Arch. Manag. 2003, 10, 209–218. [Google Scholar]
- Zhu, X.; Meng, X.; Chen, Y. A novel decision-making model for selecting a construction project delivery system. J. Civ. Eng. Manag. 2020, 26, 635–650. [Google Scholar] [CrossRef]
- Yoon, Y.; Jung, J.; Hyun, C. Decision-making support systems using case-based reasoning for construction project delivery method selection: Focused on the road construction projects in Korea. Open Civ. Eng. J. 2016, 10, 500–512. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; Molenaar, K. Risk-Based Project Delivery Selection Model for Highway Design and Construction. J. Constr. Eng. Manag. 2015, 141, 04015041. [Google Scholar] [CrossRef]
- Molenaar, K.R. Programmatic cost risk analysis for highway megaprojects. J. Constr. Eng. Manag. 2005, 131, 343–353. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch. Civ. Mech. Eng. 2020, 20, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Costin, A.M.; Teizer, J. Fusing passive RFID and BIM for increased accuracy in indoor localization. Vis. Eng. 2015, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Mak, S. A model of information management for construction using information technology. Autom. Constr. 2001, 10, 257–263. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Mbachu, J. Optimization of the Supplier Selection Process in Prefabrication Using BIM. Buildings 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hu, J.; Shen, L. Green Procurement Management in Building Industry: An Alternative Environmental Strategy. In Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate, Hangzhou, China, 23–25 October 2017; Springer: Singapore, 2017; pp. 1217–1228. [Google Scholar]
- Manjia, M.B.; Abanda, F.H.; Pettang, C. Using Markov Decision Process for Construction Site Management in Cameroon; University of Yaoundé: Yaoundé, Cameroon, 2014. [Google Scholar]
Stage | PDM | Research Type | Sources |
---|---|---|---|
PDM 3.0 | Design build | Conceptual | [13,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95] |
empirical | [3,34,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144] | ||
CMR | Conceptual | [70,71,72,74,76,79,93,145,146,147] | |
empirical | [22,23,30,34,97,109,110,113,117,118,119,122,127,148,149,150,151,152] | ||
CM | Conceptual | [28,73,77,111,153,154] | |
empirical | [48,96,99,101,108,111,112,115,119,123,124,125,133,138,139,155,156,157,158] | ||
PDM 4.0 | IPD | Conceptual | [6,39,70,146,159,160,161] |
empirical | [27,30,31,34,35,102,111,119,150,162,163,164,165,166,167,168,169,170,171,172,173] | ||
Alliancing | Conceptual | [6,39,174,175] | |
empirical | [176,177,178,179,180,181] | ||
Partnerships | Conceptual | [6,39,175,182,183,184,185] | |
empirical | [107,117,186,187,188,189] | ||
Lean project delivery | Conceptual | [190,191,192,193,194] | |
empirical | [38,157,162,195,196,197,198,199,200] |
Criteria | Sources | # of Citations |
---|---|---|
Quality | [41,46,55,143,178,201,202,203,204,205,206,207] | 12 |
Owner involvement | [46,57,157,202,206,208,209,210] | 8 |
Time/delivery speed | [40,55,207,210,211] | 5 |
Project cost | [55,203,206,210,212,213,214] | 7 |
Cost growth | [1,46,57,203,206,215,216] | 7 |
Project type | [40,41,80,89,124,207,210] | 7 |
Project manager’s characteristics | [41,46,59,124,125,217,218,219,220,221] | 10 |
Schedule growth | [1,40,46,54,57,59,124,157,203,206,207,216] | 12 |
Market competitiveness | [59,204,205,209,222,223,224] | 7 |
Contractor’s abilities | [46,204,206,225,226,227] | 6 |
Sustainability goals | [70,167,202,206,228,229,230] | 7 |
Technological innovations | [223,224,231,232,233] | 5 |
Risk | [1,46,57,112,202,203,204,206,210,234,235,236,237,238] | 14 |
Complexity | [46,57,73,202,204,206,207,209,224] | 9 |
Communication | [163,239] | 2 |
No | Method | Source | Total |
---|---|---|---|
1 | Weighted sum approach | [55,240,241] | 3 |
2 | AHP | [41,46,54,57,197,201,217] | 7 |
3 | ANP | [60,157,242,243] | 4 |
4 | Multi-attribute decision models | [1,54,56,205,219,240,244,245] | 8 |
5 | Fuzzy approach | [197,232,233,246,247,248,249,250,251,252,253] | 11 |
6 | Simulation decision models | [224,254,255,256] | 4 |
7 | ANN | [257,258,259,260] | 4 |
8 | Web-based approach | [61,202,261] | 3 |
9 | Case-based reasoning | [218,231,232,262,263,264] | 6 |
10 | Risk-based approach | [265,266] | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; El-Sayegh, S. Critical Review of the Evolution of Project Delivery Methods in the Construction Industry. Buildings 2021, 11, 11. https://doi.org/10.3390/buildings11010011
Ahmed S, El-Sayegh S. Critical Review of the Evolution of Project Delivery Methods in the Construction Industry. Buildings. 2021; 11(1):11. https://doi.org/10.3390/buildings11010011
Chicago/Turabian StyleAhmed, Salma, and Sameh El-Sayegh. 2021. "Critical Review of the Evolution of Project Delivery Methods in the Construction Industry" Buildings 11, no. 1: 11. https://doi.org/10.3390/buildings11010011