Torsional Stability Assessment of Columns Using Photometry and FEM
Abstract
1. Introduction
2. Research Issues of the Structure
2.1. Description of the Structure
2.2. Conducted Repair Works and Used Technologies
3. Torsional Buckling
3.1. State of the Art
E · Iz · vIV − N · (v’ − zs · φ’) = 0,
E · Iω · φIV − G · It · φII + N · (− ys · wII + zs · vII − is2 · φII) = 0,
Ncr,z = π2 · E · Iz/L2,
Ncr,T = (π2 · E · Iω/L2 + G · It)/is2,
3.2. Standard Conditions
Mb,Rd = χLT · Wy · fy/γM1,
3.3. Effect of Torsional Bracing on Load-Bearing Capacity
ΔUs,2 = 0.5 · αw · ((dδ/dx)2 x=0 + (dδ/dx)2 x=L),
ΔT = 0.5 · qz · (∫δd2u/dx2 · (L − x)xdx + zg · ∫δ2dx),
4. Finite Element Study
4.1. Finite Element Model
- welding connection;
- bolted joint with endplate;
- shear connection with bolts covering only the web.
4.2. Eigenvector Evaluation
4.3. Model of the Column with Initial Imperfection
5. Results and Discussion
5.1. Column at the Height of 0–10.5 m
5.2. Column at the Height of 25.5–52.3 m
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szymczak, C.; Kujawa, M. Buckling of thin-walled columns accounting for initial geometrical imperfections. Int. J. Non Linear Mech. 2017, 95, 1–9. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Manalo, A.C.; Ferdous, W.; Zhuge, Y.; Vijay, P.V.; Pettigrew, J. Experimental and numerical evaluations on the behaviour of structures repaired using prefabricated FRP composites jacket. Eng. Struct. 2020, 210, 110358. [Google Scholar] [CrossRef]
- Liu, N.; Plucinsky, P.; Jeffers, A.E. Combining load-controlled and displacement-controlled algorithms to model thermal-mechanical snap-through instabilities in structures. J. Eng. Mech. 2017, 143, 4017051. [Google Scholar] [CrossRef]
- Liu, N.; Jeffers, A.E. Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity. Comput. Struct. 2018, 196, 1–11. [Google Scholar] [CrossRef]
- Jönsson, J.; Stan, T.-C. European column buckling curves and finite element modelling including high strength steels. J. Constr. Steel Res. 2017, 128, 136–151. [Google Scholar] [CrossRef]
- Siddika, A.; Mamun, M.A.A.; Ferdous, W.; Alyousef, R. Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review. Eng. Fail. Anal. 2020, 111, 104480. [Google Scholar] [CrossRef]
- Maru, M.B.; Lee, D.; Cha, G.; Park, S. Beam deflection monitoring based on a genetic algorithm using lidar data. Sensors 2020, 20, 2144. [Google Scholar] [CrossRef] [PubMed]
- Blanch, X.; Abellan, A.; Guinau, M. Point cloud stacking: A workflow to enhance 3D monitoring capabilities using time-lapse cameras. Remote Sens. 2020, 12, 1240. [Google Scholar] [CrossRef]
- Nowak, R.; Orłowicz, R.; Rutkowski, R. Use of TLS (LiDAR) for building diagnostics with the example of a historic building in Karlino. Buildings 2020, 10, 24. [Google Scholar] [CrossRef]
- Mahami, H.; Nasirzadeh, F.; Hosseininaveh Ahmadabadian, A.; Nahavandi, S. Automated progress controlling and monitoring using daily site images and building information modelling. Buildings 2019, 9, 70. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P. Virtual disassembling of historical edifices: Experiments and assessments of an automatic approach for classifying multi-scalar point clouds into architectural elements. Sensors 2020, 20, 2161. [Google Scholar] [CrossRef] [PubMed]
- CEN. European Standards: EN 1993-1-1 Eurocode 3: Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings; CEN: Brussels, Belgium, 2006. [Google Scholar]
- PKN. Polish Standard: PN-B-03200:1990 Konstrukcje Stalowe-Obliczenia Statyczne Projektowanie; PKN: Warsaw, Poland, 1990. [Google Scholar]
- CEN. European Standards: EN 10025-2:2019-11 Hot Rolled Products of Structural Steels. Technical Delivery Conditions for Non-Alloy Structural Steels; CEN: Brussels, Belgium, 2019. [Google Scholar]
- Paczkowski, W.; Skibicki, S.; Wróblewski, T. Skanowanie laserowe konstrukcji stalowej elektrowni węglowej. Builder 2020, 273, 22–25. [Google Scholar] [CrossRef]
- Paczkowska, T.; Paczkowski, W.; Wróblewski, T. Wpływ osiadania podłoża na stan stalowej konstrukcji szkieletowej. In Proceedings of the XXIII Konferencja Naukowo-Techniczna Awarie Budowlane, Międzyzdroje, Poland, 23–26 May 2007. [Google Scholar]
- Paczkowski, W.; Pełka-Sawenko, A. Wzmocnienie słupów stalowej konstrukcji szkieletowej w warunkach uzuosiadania podłoża. Inżynieria Bud. 2011, 5, 261–265. [Google Scholar]
- Vlasov, V.Z. Thin-Walled Beams, 2nd ed.; Israel Program for Scientific Translations: Jerusalem, Israel, 1961; pp. 263–308. [Google Scholar]
- Rykaluk, K. Zagadnienia Stateczności Konstrukcji Metalowych, 1st ed.; Dolnośląskie Wydawnictwo Edukacyjne: Wrocław, Poland, 2012; pp. 176–201. [Google Scholar]
- Brezina, V. Buckling Resistance of Metal Members and Beams, 1st ed.; Czechoslovak Academy of Sciences: Prague, Czech Republic, 1962. [Google Scholar]
- CEN. European Standards: EN 1999-1-1 Eurocode 3: Design of Aluminium Structures-Part 1-1: General Rules and Rules for Buildings; CEN: Brussels, Belgium, 2000. [Google Scholar]
- Gosowski, B. Zginanie i Skręcanie Cienkościennych Elementów Konstrukcji Metalowych, 1st ed.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2015; pp. 89–192. [Google Scholar]
- Wierzbicki, K.; Szumigała, M. Influence of the ribs parallel to web on warping and load-bearing capacity of a steel I-beam. CEER 2019, 29, 141–148. [Google Scholar] [CrossRef]
- Wierzbicki, K. Influence of endplates on the value of critical moment. IIPhDW 2018, 2018, 142–146. [Google Scholar]
- Piotrowski, R.; Szychowski, A. Lateral-torsional buckling of beams elastically restrained against warping at supports. Arch. Civ. Eng. 2015, 61, 155–174. [Google Scholar] [CrossRef]
- Boissonnade, N.; Somja, H. Influence of imperfections in FEM modeling of lateral torsional buckling. In Proceedings of the Annual Stability Conference Structural Stability Research Council, Grapevine, TX, USA, 18–21 April 2012. [Google Scholar]
- Piotrowski, R.; Szychowski, A. Lateral torsional buckling of steel beams elastically restrained at the support nodes. Appl. Sci. 2019, 9, 1944. [Google Scholar] [CrossRef]
- Iwicki, P. Sensitivity analysis of buckling loads of bisymmetric I-section columns with bracing elements. Arch. Civ. Eng. 2010, 56, 69–88. [Google Scholar] [CrossRef]
- Kurzawa, Z.; Rzeszut, K.; Szumigała, M.; Chybiński, M. Wpływ blach czołowych na moment krytyczny belek dwuteowych. Inżynieria Bud. 2006, 3, 163–166. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbicki, K.; Szewczyk, P.; Paczkowski, W.; Wróblewski, T.; Skibicki, S. Torsional Stability Assessment of Columns Using Photometry and FEM. Buildings 2020, 10, 162. https://doi.org/10.3390/buildings10090162
Wierzbicki K, Szewczyk P, Paczkowski W, Wróblewski T, Skibicki S. Torsional Stability Assessment of Columns Using Photometry and FEM. Buildings. 2020; 10(9):162. https://doi.org/10.3390/buildings10090162
Chicago/Turabian StyleWierzbicki, Krzysztof, Piotr Szewczyk, Wiesław Paczkowski, Tomasz Wróblewski, and Szymon Skibicki. 2020. "Torsional Stability Assessment of Columns Using Photometry and FEM" Buildings 10, no. 9: 162. https://doi.org/10.3390/buildings10090162
APA StyleWierzbicki, K., Szewczyk, P., Paczkowski, W., Wróblewski, T., & Skibicki, S. (2020). Torsional Stability Assessment of Columns Using Photometry and FEM. Buildings, 10(9), 162. https://doi.org/10.3390/buildings10090162