# Effect Range of the Material Constraint-II. Interface Crack

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Models’ Design

#### 2.1. Materials

#### 2.2. Model Designs

#### 2.3. GTN Damage Model

## 3. Results and Discussion

#### 3.1. “1231” Model

#### 3.2. “1234” Model

#### 3.3. “12321” Model

#### 3.4. “12324” Model

#### 3.5. “123231” Model

#### 3.6. “123234” Model

#### 3.7. Influence of the Material Constraint’s Effect Range on the Structure Integrity Assessment

## 4. Conclusions

- (1)
- The same with the models with a center crack, for all the models with an interface crack, the effect ranges of the material constraint also exist. The effect ranges of the material constraint for a center crack and an interface crack have the same characteristics.
- (2)
- Different from the models with a center crack, for the models with an interface crack, when the model changes from a homogeneous material to a bimetallic welded joint, the J-resistance curves of the models first decrease, even though the strength of the weld metal is higher than the base metal. A bimetallic welded joint with an interface crack is very dangerous.
- (3)
- For the models with an interface crack, the J-resistance curves are obviously affected by the non-adjacent material, while the crack propagation paths are mainly influenced by the materials adjacent to the crack.
- (4)
- This study, together with the previous study about the center crack, clarified the effect range of the material constraint and provided an additional basis for an accurate structure integrity assessment.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Betegón, C.; Peñuelas, I. A constraint based parameter for quantifying the crack tip stress fields in welded joints. Eng. Fract. Mech.
**2006**, 73, 1865–1877. [Google Scholar] [CrossRef] - Yang, J.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. Fatigue Fract. Eng. Mater. Struct.
**2013**, 36, 504–514. [Google Scholar] [CrossRef] - Yang, J.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. Unified correlation of in-plane and out-of-plane constraints with fracture toughness. Fatigue Fract. Eng. Mater. Struct.
**2014**, 37, 132–145. [Google Scholar] [CrossRef] - Yang, J.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Eng. Fract. Mech.
**2014**, 115, 296–307. [Google Scholar] [CrossRef] - Wang, H.T.; Wang, G.Z.; Xuan, F.Z.; Liu, C.J.; Tu, S.T. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Mater. Sci. Eng. A
**2013**, 568, 108–117. [Google Scholar] [CrossRef] - Wang, H.T.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint. Mater. Des.
**2013**, 44, 179–189. [Google Scholar] [CrossRef] - Fan, K.; Wang, G.Z.; Tu, S.T.; Xuan, F.Z. Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces. Int. J. Fract.
**2016**, 201, 143–155. [Google Scholar] [CrossRef] - Fan, K.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. Effects of work hardening mismatch on fracture resistance behavior of bi-material interface regions. Mater. Des.
**2015**, 68, 186–194. [Google Scholar] [CrossRef] - Fan, K.; Wang, G.Z.; Xuan, F.Z.; Tu, S.T. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint. Eng. Fract. Mech.
**2015**, 136, 279–291. [Google Scholar] [CrossRef] - Sarikka, T.; Ahonen, M.; Mouginot, R.; Nevasmaa, P.; Karjalainen-Roikonen, P.; Ehrnstén, U.; Hänninen, H. Effect of mechanical mismatch on fracture mechanical behavior of SA508 e Alloy 52 narrow gap dissimilar metal weld. Int. J. Press. Vessels Pip.
**2017**, 157, 30–42. [Google Scholar] [CrossRef] - Samal, M.K.; Balani, K.; Seidenfuss, M.; Roos, E. An experimental and numerical investigation of fracture resistance behaviour of a dissimilar metal welded joint. Proc. Inst. Mech. Eng. C
**2009**, 223, 1507–1523. [Google Scholar] [CrossRef] - Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R. Effects of Welded Mechanical Heterogeneity on Interface Crack Propagation in Dissimilar Weld Joints. Adv. Mater. Sci. Eng.
**2019**, 2019. [Google Scholar] [CrossRef] - Lindqvist, S.; Sarikka, T.; Ahonen, M.; Hänninen, H. The effect of crack path on tearing resistance of a narrow-gap Alloy 52 dissimilar metal weld. Eng. Fract. Mech.
**2018**, 201, 130–143. [Google Scholar] [CrossRef] - Kumar, S.; Singh, P.K.; Karn, K.N.; Bhasin, V. Experimental investigation of local tensile and fracture resistance behaviour of dissimilar metal weld joint: SA508 Gr.3 Cl.1 and SA312 Type 304LN. Fatigue Fract. Eng. Mater. Struct.
**2016**, 40, 190–206. [Google Scholar] [CrossRef] - Jang, C.; Lee, J.; Kim, J.S.; Jin, T.E. Mechanical property variation within inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel. Int. J. Press. Vessels Pip.
**2008**, 85, 635–646. [Google Scholar] [CrossRef] - Xue, H.; Sun, J. Study on micro region of crack tip of welded joints under different matches of yield stress. Hot Work. Technol.
**2016**, 45, 239–245. [Google Scholar] - Zhu, Z.Q.; Jing, H.Y.; Ge, J.G.; Chen, L.G. Effects of strength mis-matching on the fracture behavior of nuclear pressure steel A508-III welded joint. Mater. Sci. Eng., A
**2005**, 390, 113–117. [Google Scholar] [CrossRef] - Younise, B.; Rakinb, M.; Gubeljakc, N.; Medjob, B.; Sedmakd, A. Effect of material heterogeneity and constraint conditions on ductile fracture resistance of welded joint zones—Micromechanical assessment. Eng. Fail. Anal.
**2017**, 82, 435–445. [Google Scholar] [CrossRef] - Laukkanen, A.; Nevasmaa, P.; Ehrnstén, U.; Rintamaa, R. Characteristics relevant to ductile failure of bimetallic welds and evaluation of transferability of fracture properties. Nucl. Eng. Des.
**2007**, 237, 1–15. [Google Scholar] [CrossRef] - Xue, H.; Ogawa, K.; Shoji, T. Effect of welded mechanical heterogeneity on local stress and strain ahead of stationary and growing crack tips. Nucl. Eng. Des.
**2009**, 239, 628–640. [Google Scholar] [CrossRef] - Yang, J.; Wang, L. Effect Range of the Material Constraint-I. Center Crack. Materials
**2019**, 12, 67. [Google Scholar] [CrossRef] [PubMed] - Østby, E.; Thaulow, C.; Zhang, Z.L. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part I: Tearing resistance and crack growth paths. Eng. Fract. Mech.
**2007**, 74, 1770–1792. [Google Scholar] [CrossRef] - Kim, Y.J.; Schwalbe, K. Mismatch effect on plastic yield loads in idealised weldments: I. Weld centre cracks. Eng. Fract. Mech.
**2001**, 68, 163–182. [Google Scholar] [CrossRef] - Kim, Y.J.; Schwalbe, K.H. Mismatch effect on plastic yield loads in idealised weldments: II. Heat affected zone cracks. Eng. Fract. Mech.
**2001**, 68, 183–199. [Google Scholar] [CrossRef] - Kim, Y.J.; Schwalbe, K.H. Compendium of yield load solutions for strength mis-matched DE(T), SE(B) and C(T) specimens. Eng. Fract. Mech.
**2001**, 68, 1137–1151. [Google Scholar] [CrossRef]

**Figure 1.**The true stress–strain curves of the four materials. Data from [5].

**Figure 2.**Six different basic models, (

**a**) “1231” model, (

**b**) “1234” model, (

**c**) “12321” model, (

**d**) “12324” model, (

**e**) “123231” model, (

**f**) “123234” model.

**Figure 3.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “1231” models.

**Figure 4.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “1234” models.

**Figure 5.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “12321” models.

**Figure 6.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “12324” models.

**Figure 7.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “123231” models.

**Figure 8.**The J-resistance curves (

**a**) and the crack propagation paths (

**b**) of different “123234” models.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dai, Y.; Yang, J.; Wang, L.
Effect Range of the Material Constraint-II. Interface Crack. *Metals* **2019**, *9*, 696.
https://doi.org/10.3390/met9060696

**AMA Style**

Dai Y, Yang J, Wang L.
Effect Range of the Material Constraint-II. Interface Crack. *Metals*. 2019; 9(6):696.
https://doi.org/10.3390/met9060696

**Chicago/Turabian Style**

Dai, Yue, Jie Yang, and Lei Wang.
2019. "Effect Range of the Material Constraint-II. Interface Crack" *Metals* 9, no. 6: 696.
https://doi.org/10.3390/met9060696