Amorphous Steel Coatings Deposited by Cold-Gas Spraying
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Feedstock Powders and Coatings Characterization
3.2. Heat Treatment and Crystallization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yoon, S.; Kim, J.; Bae, G.; Kim, B.; Lee, C. Formation of coating and tribological behavior of kinetic sprayed Fe-based bulk metallic glass. J. Alloys Compd. 2011, 509, 347–353. [Google Scholar] [CrossRef]
- Keryvin, V.; Hoang, V.H.; Shen, J. Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics 2009, 17, 211–217. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L.; Chang, C.T. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004, 52, 4093–4099. [Google Scholar] [CrossRef]
- Pang, S.J.; Zhang, T.; Asami, K.; Inoue, A. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance. Corros. Sci. 2002, 44, 1847–1856. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T.; Kojima, A.; Inoue, A.; Masumoto, T. Magnetic properties of zero-magnetostrictive nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with high magnetic induction. J. Magn. Magn. Mater. 2000, 215–216, 288–292. [Google Scholar] [CrossRef]
- Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–893. [Google Scholar] [CrossRef]
- Kaban, I.; Jovari, P.; Waske, A.; Stoica, M.; Bednarcik, J.; Beuneu, B.; Mattern, N.; Ecker, J. Atomic structure and magnetic properties of Fe-Nb-B metallic glasses. J. Alloys Compd. 2014, 586, S189–S193. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Henao, J.; Concustell, A.; Cano, I.G.; Cinca, N.; Dosta, S.; Guilemany, J.M. Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings. J. Alloys Compd. 2015, 622, 995–999. [Google Scholar] [CrossRef]
- Bae, G.; Xiong, Y.; Kumar, S.; Kang, K.; Lee, C. General aspects of interface bonding in kinetic sprayed coatings. Acta Mater. 2008, 56, 4858–4868. [Google Scholar] [CrossRef]
- Miura, H.; Isa, S.; Omuro, K. Production of Amorphous Iron-Nickel Based Alloys by Flame-Spray Quenching and Coatings on Metal Substrates. Trans. Jpn. Inst. Met 1984, 25, 284–291. [Google Scholar] [CrossRef]
- Voyer, J. Surface Wear Improvement of Al-Alloys by Amorphous Iron-Based Flame-Sprayed Coatings. Mater. Sci. Forum 2011, 690, 405–408. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zheng, Y.G.; Chang, X.C.; Hou, W.L.; Wang, J.Q. Influence of HVOF Thermal Spray Process on the Microstructures and Properties of Fe-based Amorphous/Nano metallic Coatings. Mater. Sci. Forum 2010, 633–634, 685–694. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Chan, K.C.; Chen, Q.; Tang, C.Y. Wear behavior of HVOF-sprayed Fe-based amorphous coatings. Intermetallics 2012, 29, 80–85. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, C.; Lee, D.B. Oxidation behavior of bulk amorphous Ni57Ti18Zr20Si3Sn2 coatings between 473 and 973 K in air. J. Alloys Compd. 2008, 449, 384–388. [Google Scholar] [CrossRef]
- Raoelison, R.N.; Xie, Y.; Sapanathan, T.; Planche, M.P.; Kromer, R.; Costil, S.; Langlade, C. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Addit. Manuf. 2018, 19, 134–159. [Google Scholar] [CrossRef]
- Champagne, V.; Helfritch, D. The unique abilities of cold spray deposition. Intern. Mater. Rev. 2016, 61, 437–455. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.L.; De Rosset, W.S.; Helfritch, D. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 2004, 25, 681–688. [Google Scholar]
- Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Manygoats, K.; Schucknecht, T.; Rafaja, D. Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al2O3 substrates. J. Therm. Spray Technol. 2014, 23, 68–75. [Google Scholar] [CrossRef]
- Hassani-Gangaraj, M.; Veysset, D.; Champagne, V.K.; Nelson, K.A.; Schuh, C.A. Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Mater. 2018, 158, 430–439. [Google Scholar] [CrossRef]
- List, A.; Gärtner, F.; Schmidt, T.; Klassen, T. Impact conditions for cold spraying of hard metallic glasses. J. Therm. Spray Techn. 2012, 21, 531–540. [Google Scholar] [CrossRef]
- Tului, M.; Bezzon, A.; Marino, A.; Marra, F.; Matera, S.; Pulci, G. Amorphous steel coatings deposited by HVOF and Cold Gas Spray processes. In Proceedings of the International Thermal Spray Conference, DVS Media Gmbh, Dusseldorf, Germany, 7–9 June 2017; pp. 737–740. [Google Scholar]
- Zois, D.; Lekatou, A.; Vardavoulias, M.; Vaimakis, T.; Karantzalis, A.E. Partially amorphous stainless steel coatings: Microstructure, annealing behavior and statistical optimization of spray parameters. Surf. Coat. Tech. 2011, 206, 1469–1483. [Google Scholar] [CrossRef]
- Zois, D.; Lekatou, A.; Vardavoulias, M. Preparation and characterization of highly amorphous HVOF stainless steel coatings. J. Alloys Compd. 2010, 504S, S283–S287. [Google Scholar] [CrossRef]
- ISO 14577. Instrumented Indentation Test for Hardness and Materials Parameters; International Organization for Standardization: Genève, Switzerland, 2007. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Lu, Z.P.; Liu, C.T.; Thompson, J.R.; Porter, W.D. Structural amorphous steels. Phys. Rev. Lett. 2004, 92, 245503. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Hirotsu, Y.; Amiya, K.; Inoue, A. Crystallization process and glass stability of an Fe48Cr15Mo14C15B6Tm2 bulk metallic glass. Phys Rev. B Condens Matter Mater Phys. 2008, 78, 144205. [Google Scholar] [CrossRef]
- Davis, J.R. Handbook of Thermal Spray Technology; ASM International: Materials Park, OH, USA, 2004; pp. 47–53, 77–84. [Google Scholar]
- Cavaliere, P. Cold Spray Coating Technology for Metallic Components Repairing. In Through life engineering Services; Redding, L., Roy, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 175–184. [Google Scholar]
- Hussain, T.; McCartney, D.G.; Shipway, P.H.; Zhang, D. Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components. J. Therm. Spray Techn. 2009, 18, 364–379. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J. Microstructure of Kinetic Spray Coatings: A Review. J. Therm. Spray Techn. 2015, 24, 592–610. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Lee, S.-H.; Minamino, Y. ARB (Accumulative Roll-Bonding) and other new Techniques to Produce Bulk Ultrafine Grained Materials. Adv. Eng. Mater. 2003, 5, 338–344. [Google Scholar] [CrossRef]
- Song, M.; Sun, C.; Chen, Y.; Shang, Z.; Li, J.; Fan, Z.; Hartwig, K.T.; Zhang, X. Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade steel processed by equal channel angular extrusion. Int. J. Pres. Ves. Pip. 2019, 172, 212–219. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Whang, S.H. (Ed.) Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications; Woodhead Publishing: Cambridge, UK, 2011; p. 299. [Google Scholar]
- Baiamonte, L.; Marra, F.; Pulci, G.; Tirillò, J.; Sarasini, F.; Bartuli, C.; Valente, T. High temperature mechanical characterization of plasma-sprayed zirconia-yttria from conventional and nanostructured powders. Surf. Coat. Tech. 2015, 277, 289–298. [Google Scholar] [CrossRef]
- Lima, R.S.; Kucuk, A.; Berndt, C.C. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Mater. Sci. Eng. A 2002, 27, 224–232. [Google Scholar] [CrossRef]
Weight % | Cr | C | B | Mo | W | Mn | Si | O | Fe |
---|---|---|---|---|---|---|---|---|---|
Nominal | <25 | <2 | <5 | <15 | <10 | <2 | <2 | - | bal. |
ICP-OES Analysis | 18.55 | 0.97 | 3.3 | 12.88 | 6 | 1.6 | 1.57 | 0.018 |
CGS | |||||||
Process Gas | Gas Pressure (MPa) | Gas Flow Rate (m3/h) | Gas Temperature (°C) | Stand-off Distance (mm) | Torch Scanning Speed (mm/s) | Number of Spray Passes | Carrier Gas Flow Rate (m3/h) |
N2 | 4 | 69 | 970 | 20 | 200 | 5 | 3 |
HVOF | |||||||
Barrel (mm) | O2 Gas Flow Rate (m3/h) | Kerosene Flow Rate (l/h) | Pressure in Combustion Chamber (MPa) | Stand-off Distance (mm) | Torch Scanning Speed (mm/s) | Number of Spray Passes | Carrier Gas Flow Rate (m3/h) |
101.6 | 48.14 | 272.55 | 0.696 | 355 | 500 | 15 | 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tului, M.; Bartuli, C.; Bezzon, A.; Marino, A.L.; Marra, F.; Matera, S.; Pulci, G. Amorphous Steel Coatings Deposited by Cold-Gas Spraying. Metals 2019, 9, 678. https://doi.org/10.3390/met9060678
Tului M, Bartuli C, Bezzon A, Marino AL, Marra F, Matera S, Pulci G. Amorphous Steel Coatings Deposited by Cold-Gas Spraying. Metals. 2019; 9(6):678. https://doi.org/10.3390/met9060678
Chicago/Turabian StyleTului, Mario, Cecilia Bartuli, Alessia Bezzon, Angelo Luigi Marino, Francesco Marra, Susanna Matera, and Giovanni Pulci. 2019. "Amorphous Steel Coatings Deposited by Cold-Gas Spraying" Metals 9, no. 6: 678. https://doi.org/10.3390/met9060678
APA StyleTului, M., Bartuli, C., Bezzon, A., Marino, A. L., Marra, F., Matera, S., & Pulci, G. (2019). Amorphous Steel Coatings Deposited by Cold-Gas Spraying. Metals, 9(6), 678. https://doi.org/10.3390/met9060678