Next Article in Journal
Effect of Rolling Speed on Microstructural and Microtextural Evolution of Nb Tubes during Caliber-Rolling Process
Previous Article in Journal
Study on Friction Stir Lap Welding of Aluminium to Steel Sheets
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle

Probing the Impact Energy Release Behavior of Al/Ni-Based Reactive Metals with Experimental and Numerical Methods

1
College of Liberal Art and Sciences, National University of Defense Technology, Changsha 410073, China
2
Aviation Maintenance NCO Academy, Air Force Engineering University, Xinyang 464000, China
3
College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073, China
*
Authors to whom correspondence should be addressed.
Metals 2019, 9(5), 499; https://doi.org/10.3390/met9050499
Received: 7 March 2019 / Revised: 24 April 2019 / Accepted: 26 April 2019 / Published: 28 April 2019
  |  
PDF [7508 KB, uploaded 28 April 2019]
  |     |  

Abstract

Reactive metals (RMs) are a new class of material that can withstand mechanical loads and chemically react to release large amounts of heat under strong impact loading. They are gradually becoming widely used in defense and military fields, including for high-efficiency warheads and reactive armor. For the numerical simulation method considering the combined mechanical-thermo-chemical process for the impact energy release behavior of the RMs, the Al/Ni-based RMs were investigated in this work by combining experiments, theoretical calculations and a numerical simulation. Three kinds of Al/Ni-based RMs (Al-Ni, Al-Ni-CuO and Al-Ni-MoO3), were prepared using the hot-pressing forming process. Firstly, the compressive behavior and the parameters of the Johnson-Cook constitutive model were obtained using a mechanical testing machine and split Hopkinson pressure bars (SHPB). Secondly, the parameters of the equation of state (EOS) under the medium and low pressure conditions of the Al/Ni-based RMs, which were was seen as porous mixtures with high theoretical material density percentages (TMD%), were calculated based on the cold-energy superposition theory and the Wu-Jing method. Third, the impact energy release behaviors of the three RMs were studied with direct ballistic tests. The shock temperatures at different impact velocities were calculated based on the existing shock-induced chemical reaction thermo-chemical model while considering the chemical reaction efficiency, the relationship between the shock temperature and the extent of the chemical reaction was established, and the parameters of the relevant chemical kinetic equations were fitted. Finally, the user’s subroutines defining the material model were implemented to update the stresses in the solids elements in LS-DYNA. The model was based on the Johnson-Cook constitutive model with consideration of the mechanical-thermo-chemical coupling effect, which was verified by the experimental results. The results show that the constitutive model developed in this work can describe the impact energy release behavior of the Al/Ni-based RMs. View Full-Text
Keywords: Al/Ni-based reactive metals (RMs); mechanical properties; impact energy release behavior; numerical simulation considering the mechanical-thermo-chemical coupling effect Al/Ni-based reactive metals (RMs); mechanical properties; impact energy release behavior; numerical simulation considering the mechanical-thermo-chemical coupling effect
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ren, K.; Chen, R.; Lin, Y.; Li, S.; Zhang, X.; Dong, J. Probing the Impact Energy Release Behavior of Al/Ni-Based Reactive Metals with Experimental and Numerical Methods. Metals 2019, 9, 499.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top