Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kimura, A.; Cho, H.S.; Toda, N.; Kasada, R.; Yutani, K.; Kishimoto, H.; Iwata, N.; Ukai, S.; Fujiwara, M. High burn up fuel cladding materials R & D for advanced nuclear systems nano-sized oxide dispersion strengthening steels. J. Nucl. Sci. Technol. 2007, 44, 323–328. [Google Scholar] [CrossRef]
- Boutard, J.L.; Alamo, A.; Lindau, R.; Rieth, M. Fissile core and Tritium-Breeding Blanket: Structural materials and their requirements. C. R. Phys. 2008, 9, 287–302. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Calder, A.F.; Bacon, D.J.; Barashev, A.V.; Osetsky, Y.N. On the origin of large interstitial clusters in displacement cascades. Philos. Mag. 2010, 90, 863–884. [Google Scholar] [CrossRef]
- Bloom, E.E.; Zinkle, S.J.; Wiffen, F.W. Materials to deliver the promise of fusion power—Progress and challenges. J. Nucl. Mater. 2004, 329–333, 12–19. [Google Scholar] [CrossRef]
- Matijasevic, M.; Van Renterghem, W.; Almazouzi, A. Characterization of irradiated single crystals of Fe and Fe–15Cr. Acta Mater. 2009, 57, 1577–1585. [Google Scholar] [CrossRef]
- Kohyama, A.; Katoh, Y.; Ando, M.; Jimbo, K. A new Multiple Beams—Material Interaction Research Facility for radiation damage studies in fusion materials. Fusion Eng. Des. 2000, 51–52, 789–795. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: New York, NY, USA, 2007; pp. 545–565. ISBN 978-3-540-49471-3. [Google Scholar]
- Zhang, C.H.; Jang, J.; Kim, M.C.; Cho, H.D.; Yang, Y.; Sun, Y.M. Void swelling in a 9Cr ferritic/martensitic steel irradiated with energetic Ne-ions at elevated temperatures. J. Nucl. Mater. 2008, 375, 185–191. [Google Scholar] [CrossRef]
- Topbasi, C.; Kaoumi, D.; Motta, A.T.; Kirk, M.A. Microstructural evolution in NF616 (P92) and Fe–9Cr–0.1C model alloy under heavy ion irradiation. J. Nucl. Mater. 2015, 466, 179–186. [Google Scholar] [CrossRef]
- Topbasi, C.; Motta, A.T.; Kirk, M.A. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 2012, 425, 48–53. [Google Scholar] [CrossRef]
- Zhao, F.; Qiao, J.; Huang, Y.; Wan, F.; Ohnuki, S. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM). Mater. Charact. 2008, 59, 344–347. [Google Scholar] [CrossRef]
- Peng, L.; Huang, Q.; Ohnuki, S.; Yu, C. Swelling of CLAM steel irradiated by electron/helium to 17.5 dpa with 10 appm He/dpa. Fusion Eng. Des. 2011, 86, 2624–2626. [Google Scholar] [CrossRef]
- Gai, X.; Lazauskas, T.; Smith, R.; Kenny, S.D. Helium bubbles in bcc Fe and their interactions with irradiation. J. Nucl. Mater. 2015, 464, 382–390. [Google Scholar] [CrossRef]
- Fischer-Cripps, A.C. Nanoindentation, 2nd ed.; Springer: New York, NY, USA, 2004; pp. 147–161. ISBN 978-1-4419-9871-2. [Google Scholar]
- Takayama, Y.; Kasada, R.; Sakamoto, Y.; Yabuuchi, K.; Kimura, A.; Ando, M.; Hamaguchi, D.; Tanigawa, H. Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation. J. Nucl. Mater. 2013, 442, S23–S27. [Google Scholar] [CrossRef]
- Kasada, R.; Konishi, S.; Yabuuchi, K.; Nogami, S.; Ando, M.; Hamaguchi, D.; Tanigawa, H. Depth-dependent nanoindentation hardness of reduced-activation ferritic steels after MeV Fe-ion irradiation. Fusion Eng. Des. 2014, 89, 1637–1641. [Google Scholar] [CrossRef]
- Klueh, R.L.; Nelson, A.T. Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 2007, 371, 37–52. [Google Scholar] [CrossRef]
- Jin, S.X.; Guo, L.P.; Yang, Z.; Fu, D.J.; Liu, C.S.; Tang, R.; Liu, F.H.; Qiao, Y.X.; Zhang, H.D. Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater. Charact. 2011, 62, 136–142. [Google Scholar] [CrossRef]
- Jin, S.; Guo, L.; Li, T.; Chen, J.; Yang, Z.; Luo, F.; Tang, R.; Qiao, Y.; Liu, F. Microstructural evolution of P92 ferritic/martensitic steel under Ar+ ion irradiation at elevated temperature. Mater. Charact. 2012, 68, 63–70. [Google Scholar] [CrossRef]
- Huang, Y.; Wharry, J.P.; Jiao, Z.; Parish, C.M.; Ukai, S.; Allen, T.R. Microstructural evolution in proton irradiated NF616 at 773 K to 3 dpa. J. Nucl. Mater. 2013, 442, S800–S804. [Google Scholar] [CrossRef]
- Huang, X.; Shen, Y.; Zhu, J. Influence of Ar-ions irradiation on the oxidation behavior of ferritic—martensitic steel P92 in supercritical water. J. Nucl. Mater. 2015, 457, 18–28. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2008 Program. 2008. Available online: http://www.srim.org (accessed on 12 January 2017).
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Kasada, R.; Takayama, Y.; Yabuuchi, K.; Kimura, A. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 2011, 86, 2658–2661. [Google Scholar] [CrossRef]
- Hardie, C.D.; Roberts, S.G. Nanoindentation of model Fe-Cr alloys with self-ion irradiation. J. Nucl. Mater. 2013, 433, 174–179. [Google Scholar] [CrossRef]
- Suresh, S.; Giannakopoulos, A.E. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998, 46, 5755–5767. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Ghidelli, M.; Sebastiani, M.; Collet, C.; Guillemet, R. Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation. Mater. Des. 2016, 106, 436–445. [Google Scholar] [CrossRef]
- Allen, T.R.; Tan, L.; Gan, J.; Gupta, G.; Was, G.S.; Kenik, E.A.; Shutthanandan, S.; Thevuthasan, S. Microstructural development in advanced ferritic—martensitic steel HCM12A. J. Nucl. Mater. 2006, 351, 174–186. [Google Scholar] [CrossRef]
- Kimura, A.; Morimura, T.; Narui, M.; Matsui, H. Irradiation hardening of reduced activation martensitic steels. J. Nucl. Mater. 1996, 233–237, 319–325. [Google Scholar] [CrossRef]
- Xin, Y.; Ju, X.; Qiu, J.; Guo, L.; Chen, J.; Yang, Z.; Zhang, P.; Cao, X.; Wang, B. Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique. Fusion Eng. Des. 2012, 87, 432–436. [Google Scholar] [CrossRef]
- Tanigawa, H.; Klueh, R.L.; Hashimoto, N.; Sokolov, M.A. Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 °C. J. Nucl. Mater. 2009, 386–388, 231–235. [Google Scholar] [CrossRef]
- Hu, W.; Luo, F.; Shen, Z.; Guo, L.; Zheng, Z.; Wen, Y.; Ren, Y. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions. Fusion Eng. Des. 2015, 90, 23–28. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, J.; Huang, X. Ar ion irradiation hardening of high-Cr ferritic/martensitic steels at 700 °C. Metals Mater. Int. 2016, 22, 181–186. [Google Scholar] [CrossRef]
- Anderoglu, O.; Byun, T.S.; Toloczko, M.; Maloy, S.A. Mechanical performance of ferritic martensitic steels for high dose applications in advanced nuclear reactors. Metall. Mater. Trans. A 2013, 44, 70–83. [Google Scholar] [CrossRef]
- Azevedo, C.R.F. A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 2011, 18, 1921–1942. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Liu, P.P.; Wan, F.P.; Zhan, Q. Helium and hydrogen irradiation induced hardening in CLAM steel. Fusion Eng. Des. 2015, 91, 73–78. [Google Scholar] [CrossRef]
- Lei, J.; Ding, H.; Shu, G.G.; Wan, Q.M. Study on the mechanical properties evolution of A508-3 steel under proton irradiation. Nucl. Instrum. Meth. Phys. Res. Sec. B Beam Interact. Mater. Atoms 2014, 338, 13–18. [Google Scholar] [CrossRef]
- Osetsky, Y.N.; Stoller, R.E. Atomic-scale mechanisms of helium bubble hardening in iron. J. Nucl. Mater. 2015, 465, 448–454. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Yang, Y.; Meng, Y.; Jang, J.; Kimura, A. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation. J. Nucl. Mater. 2014, 455, 349–353. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.; Wang, Y.; Sun, J.; Hu, B.; Jin, Y.; Hou, M.; Liu, C.; Sun, Y.; Han, J.; et al. Microstructural changes in a low-activation Fe-Cr-Mn alloy irradiated with 92 MeV Ar ions at 450 °C. J. Nucl. Mater. 2000, 283–287, 259–262. [Google Scholar] [CrossRef]
C | Si | Cr | Mn | W | Mo | Nb | Ni | V | N | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.093 | 0.14 | 8.75 | 0.41 | 1.62 | 0.505 | 0.052 | 0.207 | 0.183 | 0.063 | 0.003 | Bal. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Shen, Y.; Zhu, J.; Huang, X.; Shang, Z. Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation. Metals 2018, 8, 94. https://doi.org/10.3390/met8020094
Li Q, Shen Y, Zhu J, Huang X, Shang Z. Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation. Metals. 2018; 8(2):94. https://doi.org/10.3390/met8020094
Chicago/Turabian StyleLi, Qingshan, Yinzhong Shen, Jun Zhu, Xi Huang, and Zhongxia Shang. 2018. "Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation" Metals 8, no. 2: 94. https://doi.org/10.3390/met8020094
APA StyleLi, Q., Shen, Y., Zhu, J., Huang, X., & Shang, Z. (2018). Evaluation of Irradiation Hardening of P92 Steel under Ar Ion Irradiation. Metals, 8(2), 94. https://doi.org/10.3390/met8020094