Production and Characterization of Al Alloys Obtained Through Molten Metal Deposition
Abstract
1. Introduction
- Flexible and rapid production for on-demand manufacturing, reducing lead times and costs while allowing parameter adjustment to meet specific customer needs, with a maximum production volume of 0.82 dm3/h, compared to 0.1–0.32 dm3/h liquid metal jetting for similar resolution. Maximum production rates for single laser LPBF are in the range of 0.02–0.05, whereas WAAM and DED are in the order of 0.5–4 dm3/h for lower resolution.
- Sustainability and reduced environmental impact due to high energy efficiency, elimination of toxic substances, and the ability to use fully recyclable materials.
- Economic competitiveness, achieving cost reductions of 75–90% thanks to process efficiency, the widespread availability of filaments versus expensive powders (often requiring specific formulations), and low capital and operational costs.
- With proper process specifications for layer dimensions—height, path width, and production volume—printing is more controlled and uniform, minimizing post-processing of the “rough” parts [33]. This ensures a buy-to-fly ratio above 70%, meaning the printed product is essentially finished after printing.
- Controlled solidification enables manufacturing of complex geometries without the need for supports, allowing maximum overhang angles of 75° and bridges up to 25 mm [36].
- Reduced energy consumption, as the material is molten in an insulated printhead rather than on the part itself. No active melt pool is formed on the part to overcome latent heat to melt the fed material, as is the case for WAAM and DED processes. Given the high latent heat and the high thermal conductivity, resp 380–470 kJ/kg and 140–250 W/mK depending on the alloy, less energy is required compared to other thermal metal AM processes from WAAM to LPBF [37,38]. This is the main driver for the lower cooling rates and potential to process the unmodified higher strength alloys.
2. Materials and Methods
3. Results
3.1. Alloy 4043
3.2. Alloy 6061
- Spheroidal, uniformly distributed in the a-Al matrix;
- Elongated, predominantly located along grain boundaries.
3.3. 6061 Aged Samples
4. Conclusions
- Both alloys are suitable for fabrication using the MMD process, which enables reduced production times and lower energy consumption compared with conventional manufacturing routes.
- Defect-free components featuring geometric characteristics such as overhangs can be successfully produced.
- By selecting appropriate process parameters, fine microstructures can be achieved relative to the as-cast condition, resulting in improved mechanical performance.
- The mechanical properties of the 6061 alloy can be further enhanced by applying a T6 precipitation-hardening heat treatment.
- Although 6061 is crack sensitive in thermal processes such as welding, WAAM, DED and LPBF, no solidification or thermal cracking were detected.
- Traces of oxidations were found, especially in the interlayer area, suggesting that controlling the ambient during manufacturing is important.
- Despite the fact that no shielding gas or controlled inert ambient was used during sample fabrication, the results demonstrate the high potential of the MMD process for manufacturing high strength aluminum parts. But, in order to achieve better mechanical properties, which arise from a “cleaner” microstructure, the use of a protective gas atmosphere in the deposition chamber is envisaged for future samples preparation. Following alloy deposition optimization, tensile, impact and fatigue samples will be manufactured for mechanical testing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MMD | Molten metal deposition |
| AM | Additive manufacturing |
References
- Zhu, Z.; Hu, Z.; Seet, H.L.; Liu, T.; Liao, W.; Ramamurty, U.; Nai, S.M.L. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tools Manuf. 2023, 190, 104047. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, E.; Elangeswaran, C.; Hodaei, A.; Dehgahi, S.; Galle, J.; Gibson, I.; Jafari, D. Additive Manufacturing of an Aluminium Alloy by Molten Metal Deposition: A Finite Element and Experimental Study. 2016. Available online: https://ssrn.com/abstract=5074770 (accessed on 22 September 2025).
- Cooke, S.; Ahmadi, K.; Willerth, S.; Herring, R. Metal additive manufacturing: Technology, metallurgy and modelling. J. Manuf. Process. 2020, 57, 978–1003. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar]
- Jafari, D.; Vaneker, T.H.J.; Gibson, I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts. Mater. Des. 2021, 202, 109471. [Google Scholar] [CrossRef]
- Li, Y.; Su, C.; Zhu, J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022, 13, 100330. [Google Scholar] [CrossRef]
- Armstrong, M.; Mehrabi, H.; Naveed, N. An overview of modern metal additive manufacturing technology. J. Manuf. Process. 2022, 84, 1001–1029. [Google Scholar] [CrossRef]
- Knapp, G.L.; Gussev, M.; Shyam, A.; Feldhausen, T.; Plotkowski, A. Microstructure, deformation and fracture mechanisms in Al-4043 alloy produced by laser hot-wire additive manufacturing. Addit. Manuf. 2022, 59, 103150. [Google Scholar] [CrossRef]
- Chou, S.C.; Trask, M.; Danovitch, J.; Wang, X.L.; Choi, J.P.; Brochu, M. Pulsed laser powder bed fusion additive manufacturing of A356. Mater. Charact. 2018, 143, 27–33. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Schulz, E.; McWilliams, B.; Cho, K.; Sohn, Y.H. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018, 143, 5–17. [Google Scholar] [CrossRef]
- Zavala-Arredondo, M.; London, T.; Allen, M.; Maccio, T.; Ward, S.; Griffiths, D.; Allison, A.; Goodwin, P.; Hauser, C. Use of power factor and specific point energy as design parameters in laser powder-bed fusion (L-PBF) of AlSi10Mg alloy. Mater. Des. 2019, 182, 108018. [Google Scholar] [CrossRef]
- Zhou, L.; Hyer, H.; Park, S.; Pan, H.; Bai, Y.; Rice, K.P.; Sohn, Y.H. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion. Addit. Manuf. 2019, 28, 485–496. [Google Scholar] [CrossRef]
- Fulcher, B.A.; Leigh, D.K.; Watt, T.J. Comparison of AlSi10Mg and Al 6061 processed through DMLS. In Proceedings of the Solid Freeform Fabrication (SFF) Symposium; University of Texas at Austin: Austin, TX, USA, 2014. [Google Scholar]
- Kaufmann, N.; Imran, M.; Wischeropp, T.M.; Emmelmann, C.; Siddique, S.; Walther, F. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys. Procedia 2016, 83, 918–926. [Google Scholar] [CrossRef]
- Ahuja, B.; Karg, M.; Nagulin, K.Y.; Schmidt, M. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed. Phys. Procedia 2014, 56, 135–146. [Google Scholar] [CrossRef]
- Kou, S. A simple index for predicting the susceptibility to solidification cracking. Weld. J. 2015, 94, 374–388. [Google Scholar]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Louvis, E.; Fox, P.; Sutcliffe, C.J. Selective laser melting of aluminium components. J. Mater. Process. Technol. 2011, 211, 275–284. [Google Scholar] [CrossRef]
- Hosseini, F.; Asad, A.; Yakout, M. Microstructure characterization and mechanical properties of Al6061 alloy fabricated by laser powder bed fusion. J. Manuf. Mater. Process. 2024, 8, 288. [Google Scholar] [CrossRef]
- Zheng, T.; Ma, C.; Killips, A.; Li, B.; Li, X. Nanoparticle-enabled additive manufacturing of high strength 6061 aluminum alloy via laser powder bed fusion. Manuf. Lett. 2024, 41, 753–757. [Google Scholar] [CrossRef]
- Li, W.; Pan, S.; Zhu, Y.; Qian, F.; Liang, Y.; Xu, S.; Cheng, X. Directed energy deposition of Al-Mg-Si alloys with fully equiaxed microstructure and isotropic high strength/ductility. Addit. Manuf. 2024, 81, 104020. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Song, S.; Bai, Y.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; et al. Additive manufacturing and mechanical properties of the dense and crack-free Zr-modified aluminum alloy 6061 fabricated by laser powder bed fusion. Addit. Manuf. 2021, 41, 101966. [Google Scholar] [CrossRef]
- Doumenc, G.; Couturier, L.; Courant, B.; Paillard, P.; Benoit, A.; Gautron, E.; Girault, B.; Pirling, T.; Cabeza, S.; Gloaguen, D. Investigation of microstructure, hardness and residual stresses of wire and arc additive manufactured 6061 aluminium alloy. Materialia 2022, 25, 101520. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Hu, S.; Liu, Y.; Ma, D. Additive friction stir deposition: A review on processes, parameters, characteristics, and applications. Int. J. Adv. Manuf. Technol. 2024, 133, 1111–1128. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J.; Patel, V. Friction stir powder additive manufacturing of Al 6061 alloy: Enhancing microstructure and mechanical properties by reducing thermal gradient. J. Mater. Res. Technol. 2023, 26, 1168–1184. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Shi, J. Microstructure and mechanical properties of laser DED produced crack-free Al 7075 alloy: Effect of process parameters and heat treatment. Mater. Sci. Eng. A 2022, 857, 144075. [Google Scholar] [CrossRef]
- Wei, Y.-K.; Luo, X.-T.; Chu, X.; Huang, G.-S.; Li, C.-J. Solid state additive manufacturing high-performance aluminum alloy 6061 enabled by an in-situ micro-forging assisted cold spray. Mater. Sci. Eng. A 2020, 776, 139024. [Google Scholar] [CrossRef]
- Rezaeinejad, S.S.; Strik, D.H.; Visser, R.M.; Bor, T.C.; Luckabauer, M.; Akkerman, R. Solid state additive manufacturing of AA6060 employing friction screw extrusion additive manufacturing. JOM 2023, 75, 4199–4211. [Google Scholar] [CrossRef]
- Valcun. Available online: https://www.valcun.be/ (accessed on 3 March 2024).
- Reed-Hill, R.E.; Abbaschian, R.; Abbaschian, L. Physical Metallurgy Principles; Cengage Learning: Boston, UK, 2008. [Google Scholar]
- Kapil, A.; Sharma, V.; De Pauw, J.; Sharma, A. Exploring impact, spreading, and bonding dynamics in molten metal deposition for novel drop-on-demand printing. Mater. Des. 2024, 238, 112633. [Google Scholar] [CrossRef]
- Liu, J.; Wen, P. Metal vaporization and its influence during laser powder bed fusion process. Mater. Des. 2022, 215, 110505. [Google Scholar] [CrossRef]
- Yu, T.; Zhao, J. Quantifying the mechanisms of keyhole pore evolutions and the role of metal-vapor condensation in laser powder bed fusion. Addit. Manuf. 2023, 72, 103642. [Google Scholar] [CrossRef]
- Gibson, I.; Goulas, C.; Jonkers, S.; Elangeswaran, C.; Galle, J.; De Pauw, J. High supportless overhangs with molten metal deposition: A new single-step direct aluminium additive manufacturing technology. In Proceedings of the International Conference on Design for 3D Printing (ICD3DP 2023), Republic of Korea, 18–21 October 2023. [Google Scholar]
- Kutschke, Z.; Li, Z.; Berlia, R.; Hemker, K.; Weihs, T.; Mueller, J. Metal extrusion additive manufacturing: A unified framework and comprehensive review of an emerging technology. J. Manuf. Process. 2025, 156, 206–218. [Google Scholar] [CrossRef]
- Hendrickx, B.; Li, G.; Van Meensel, K.; Ingarao, G.; Fratini, L.; De Pauw, J.; Hosseini, P.; Duflou, J.R. Industrial symbiosis in aluminium parts manufacturing: Towards 100% material efficiency by combining friction stir extrusion and molten metal deposition. Sustain. Mater. Technol. 2025, 46, e01755. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Mehta, A.; Sohn, Y.H. Effects of alloy composition and solid-state diffusion kinetics on powder bed fusion cracking susceptibility. J. Phase Equilib. Diffus. 2020, 42, 5–13. [Google Scholar] [CrossRef]
- ASTM B962-17; Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy Products Using Archimedes’ Principle. ASTM International: West Conshohocken, PA, USA, 2017.
- Miao, Q.; Wu, D.; Chai, D.; Zhan, Y.; Bi, G.; Niu, F.; Ma, G. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing. Mater. Des. 2020, 186, 108205. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Xie, C.; Liu, H.; Zhang, Q. Microstructure and ratcheting behavior of additive manufactured 4043 aluminum alloy. J. Mater. Eng. Perform. 2018, 27, 4582–4592. [Google Scholar] [CrossRef]
- Castro-Sastre, M.Á.; García-Cabezón, C.; Fernández-Abia, A.I.; Martín-Pedrosa, F.; Barreiro, J. Comparative study on microstructure and corrosion resistance of Al-Si alloy cast from sand mold and binder jetting mold. Metals 2021, 11, 1421. [Google Scholar] [CrossRef]
- Rahman, A.; Isanaka, S.P.; Liou, F. A comprehensive study of cooling rate effects on diffusion, microstructural evolution, and characterization of aluminum alloys. Machines 2025, 13, 160. [Google Scholar] [CrossRef]
- ASM International. ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Langelandsvik, G.; Horgar, A.; Furu, T.; Roven, H.J.; Akselsen, O.M. Comparative study of eutectic Al-Si alloys manufactured by WAAM and casting. Int. J. Adv. Manuf. Technol. 2020, 110, 935–947. [Google Scholar] [CrossRef]
- Haghdadi, N.; Zarei-Hanzaki, A.; Roostaei, A.A.; Hemmati, A.R. Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 2013, 43, 419–425. [Google Scholar] [CrossRef]
- Davies, J.R. Aluminium and Aluminium Alloys; ASM International: Materials Park, OH, USA, 1993. [Google Scholar]
- Warmuzek, M. (Ed.) Aluminum-Silicon Casting Alloys: Atlas of Microstructures; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Dash, S.S.; Chen, D. A review on processing–microstructure–property relationships of Al-Si alloys: Recent advances in deformation behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, W.; Zheng, S.; Peng, M.; Yang, W.; Li, M.; Li, M. Microstructure evolution, texture and mechanical properties of hot rolled 4043 aluminum-silicon alloy under short-term annealing. J. Mater. Res. Technol. 2025, 36, 2083–2095. [Google Scholar] [CrossRef]
- Nakai, M.; Itoh, G. The effect of microstructure on mechanical properties of forged 6061 aluminum alloy. Mater. Trans. 2014, 55, 114–119. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, S.C.; Zhou, H.T.; Zheng, K.; Chen, H.X. Microstructure and mechanical properties of a 6061 aluminum alloy part prepared by casting-forging integrated forming technology. Mater. Sci. Forum 2014, 788, 215–222. [Google Scholar] [CrossRef]
- Whitney, M.A.; Jin, H.; Wells, M.A.; Benoit, M.J. Thermal analysis and characterization of cast 6061 aluminum alloy microstructures with elevated iron content. Thermochim. Acta 2025, 746, 179951. [Google Scholar] [CrossRef]
- Doan, L.C.; Ohmori, Y.; Nakai, K. Precipitation and dissolution reactions in a 6061 aluminum alloy. Mater. Trans. JIM 2000, 41, 300–305. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Buchanan, K.; Colas, K.; Ribis, J.; Lopez, A.; Garnier, J. Analysis of the metastable precipitates in peak-hardness aged Al-Mg-Si(-Cu) alloys with differing Si contents. Acta Mater. 2017, 132, 209–221. [Google Scholar] [CrossRef]

















| Element | 4043 (%) wt | 6061 (%) wt |
|---|---|---|
| Al | balance | balance |
| Si | 4.5–6.0 | 0.61 |
| Fe | 0.80 | 0.20 |
| Cu | 0.30 | 0.29 |
| Mn | 0.05 | 0.03 |
| Mg | 0.05 | 0.81 |
| Zn | 0.10 | 0.02 |
| Ti | 0.20 | 0.01 |
| Batch Names | Material | Geometry | Nozzle Temperature (°C) | Substrate Temperature (°C) | Print Speed (mm/min) |
|---|---|---|---|---|---|
| XYZ-4043 | 4043 | Cylinder | 860 | 525 | 900 |
| XYZC-4043 | 4043 | Cylinder | 860 | 525 | 900 |
| XYZ/H-4043 | 4043 | Cylinder | 880 | 535 | 900 |
| XYZ/45-4043 | 4043 | Cone | 860 | 525 | 900 |
| XYZC/45-4043 | 4043 | Cone | 860 | 525 | 900 |
| XYZ-6061 | 6061 | Rectangle | 870 | 530 | 360 |
| Sample | XYZ-4043 | XYZC-4043 | XYZ/H-4043 | XYZ/45-4043 | XYZC/45-4043 |
|---|---|---|---|---|---|
| HV0.5 | 41.6 ± 4.5 | 44.2 ± 2.2 | 39.6 ± 4.0 | 46.2 ± 1.5 | 42.5 ± 3.5 |
| Density g/cm3 | 2.63 | 2.65 | 2.66 | 2.67 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Menapace, C.; Galle, J.; Elangeswaran, C.; Makaya, A. Production and Characterization of Al Alloys Obtained Through Molten Metal Deposition. Metals 2026, 16, 238. https://doi.org/10.3390/met16020238
Menapace C, Galle J, Elangeswaran C, Makaya A. Production and Characterization of Al Alloys Obtained Through Molten Metal Deposition. Metals. 2026; 16(2):238. https://doi.org/10.3390/met16020238
Chicago/Turabian StyleMenapace, Cinzia, Jonas Galle, Chola Elangeswaran, and Advenit Makaya. 2026. "Production and Characterization of Al Alloys Obtained Through Molten Metal Deposition" Metals 16, no. 2: 238. https://doi.org/10.3390/met16020238
APA StyleMenapace, C., Galle, J., Elangeswaran, C., & Makaya, A. (2026). Production and Characterization of Al Alloys Obtained Through Molten Metal Deposition. Metals, 16(2), 238. https://doi.org/10.3390/met16020238

