High-Temperature Mechanical Properties and Friction-Wear Performance of CrAlN Coatings Prepared by Arc Ion Plating via Mo Doping
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Materials Designation
2.3. Characterization of Coating Properties
2.3.1. Microstructure and Chemical Composition
2.3.2. Mechanical Properties
2.3.3. Friction and Wear Properties
2.3.4. Wear Mechanisms
3. Results
3.1. Chemical Composition, Deposition Rate and Microstructures
3.2. Mechanical Properties
3.3. Friction and Wear Properties
4. Discussion
- (i)
- At room temperature, the wear mechanism is primarily adhesive-abrasive wear, a low-to-medium Mo content is recommended to improve load-bearing capacity and crack resistance (toughness/adhesion) without introducing diminishing returns;
- (ii)
- At high temperatures, such as approximately 600 °C, the primary wear mechanism is abrasive-oxidation wear, a moderate Mo content (corresponding to CrAlMoN-2 in this study) is preferred, as it provides sufficient Mo to form a Mo-rich lubricious tribo-oxide film (MoO3-containing) while maintaining overall mechanical integrity. In contrast, undoped CrAlN tends to suffer localized failure under the same condition and is thus unsuitable for sustained high-temperature wear;
- (iii)
- Mixed environments (thermal cycling or RT and elevated temperature): a moderate Mo level is preferred as a compromise, combining both adequate RT load support and high-temperature oxide-assisted friction stabilization.
5. Conclusions
- (1)
- In terms of phase structure, Mo doping promotes a stronger (200) preferred orientation in the coatings. Concurrently, the diffraction peaks exhibit a noticeable shift toward lower angles with rising Mo content, and the grain size exhibits a trend of first decreasing and then increasing. As a result of solid solution strengthening, the coating hardness is enhanced, increasing from 1789.9 HV for CrAlN to 1844.3 HV for CrAlMoN-2. Compared to the CrAlN coating, CrAlMoN-2 displays superior critical loads, with Lc1 and Lc2 values of 57.8 N and 77.1 N, respectively. Following high-temperature annealing, these critical load values for CrAlMoN-2 remain largely unchanged. Moreover, radial cracks are rarely observed in its Vickers indentation morphology, confirming its excellent mechanical integrity.
- (2)
- Owing to the lubricating effect of MoO3, the CrAlMoN coatings transition more rapidly into a stable friction stage. At room temperature, the average friction coefficient for all coatings remains around 0.5. When tested at 600 °C, the average coefficient decreases from 0.97 for CrAlN to 0.75 for CrAlMoN-2, while the wear rate is reduced to 3.9 × 10−6 mm3/N·m, reflecting significantly improved tribological performance. With increasing temperature, the dominant wear mechanism progressively transitions from a mixed abrasive-adhesive mode to one characterized by abrasive-oxidative wear.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PVD | Physical Vapor Deposition |
| CoF | Coefficient of Friction |
| MoO3 | Molybdenum Trioxide |
| RT | Room temperature |
References
- Torabi, S.; Ghasemi, R.; Shahrabi Farahani, A.; Zamani, P.; Memari, M.; Mirjani, B.; Alizadeh, M.; Elmkhah, H. Modeling, microstructural characterization, mechanical and corrosion properties of the CrN/CrAlN multilayer coating produced by physical vapor deposition. Ceram. Int. 2024, 50, 21451–21462. [Google Scholar] [CrossRef]
- Beake, B.D.; Roberts, J.; Zhu, Y.; Liskiewicz, T.W. Simulating erosion tests with statistically distributed micro-scale impact: A study on PVD TiAlN and AlCrN coatings. Wear 2025, 570, 205911. [Google Scholar] [CrossRef]
- He, Q.; DePaiva, J.M.; Martins, M.M.; Amorim, F.L.; Torres, R.D.; Arif, A.F.; Veldhuis, S.C. PVD coating strategies: Developing a combination of AlCrN and AlTiSiN for enhanced surface performance during threading of super duplex stainless steel. Int. J. Refract. Met. Hard Mater. 2024, 121, 106670. [Google Scholar] [CrossRef]
- Ling, C.L.; Yajid, M.A.M.; Tamin, M.N.; Kamarudin, M.; Taib, M.A.A.; Nosbi, N.; Ali, W.F.F.W. Effect of substrate roughness and PVD deposition temperatures on hardness and wear performance of AlCrN-coated WC-Co. Surf. Coat. Technol. 2022, 436, 128304. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, L.; Li, W.; Liu, Z.; Li, L.; Wang, B.; Cai, Y.; Ren, X.; Liang, X. Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures. Metals 2024, 14, 662. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Chung, C.-H.; Tsai, Z.-H.; Tsai, J.-M. Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surf. Coat. Technol. 2022, 432, 128097. [Google Scholar] [CrossRef]
- Yaqoob, S.; Ghani, J.A.; Jouini, N.; Juri, A.Z. Performance Evaluation of PVD and CVD Multilayer-Coated Tools in Machining High-Strength Steel. Coatings 2024, 14, 865. [Google Scholar] [CrossRef]
- Iram, S.; Peng, S.; Zhang, C.; Zhang, S.; Sun, D. Improving the mechanical properties and wear resistance of Mo-doped AlCrN coating via implementing a gradient structural design. Surf. Coat. Technol. 2025, 512, 132425. [Google Scholar] [CrossRef]
- Yan, C.; Yu, Y.; Mei, F.; Gao, J.; Lin, X.; Lin, J. A Si-Nb co-alloyed AlCrN coating with good mechanical properties, excellent thermal stability and resistance to high temperature oxidation. Surf. Coat. Technol. 2024, 484, 130825. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Ma, G.; Dong, Y.; Zhang, X.; Liu, Y.; Wang, Z.; Wang, A. Achieving ultrastrong-tough CrAlN coatings with low friction coefficient by Y incorporating. Ceram. Int. 2024, 50, 23621–23633. [Google Scholar] [CrossRef]
- Liu, C.B.; Pei, W.; Huang, F.; Chen, L. Improved mechanical and thermal properties of CrAlN coatings by Si solid solution. Vacuum 2016, 125, 180–184. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.Q.; Xu, Y.X.; Du, Y. Influence of Zr on structure, mechanical and thermal properties of Cr–Al–N coatings. Surf. Coat. Technol. 2015, 275, 289–295. [Google Scholar] [CrossRef]
- Trindade, B.; Li, W.Z.; Fernandes, F.; Cavaleiro, A. Effect of Nb target power on the structure, mechanical properties, thermal stability and oxidation resistance of Cr–Al–Nb–N coatings. Surf. Coat. Technol. 2016, 285, 270–277. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.X.; Chen, L.; Pei, F.; Zhang, L.J.; Du, Y. Structural, mechanical and thermal properties of CrAlNbN coatings. Surf. Coat. Technol. 2018, 349, 894–900. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.X.; Chen, L.; Pei, F.; Du, Y. Mechanical properties, thermal stability and oxidation resistance of Ta-doped CrAlN coatings. Surf. Coat. Technol. 2019, 368, 25–32. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Kalscheuer, C. Arc PVD (Cr, Al, Mo)N and (Cr, Al, Cu)N coatings for mobility applications. Surf. Coat. Technol. 2020, 384, 125046. [Google Scholar] [CrossRef]
- Chang, Q.C.; Liu, Y.; Xia, Y.L.; Liu, X.Y.; Xie, Y.X.; Hu, J.K.; Li, W. Effect of Mo on microstructure and sliding wear performance of CoCrFeNiMox high entropy alloy coatings by laser cladding. Mater. Res. Express 2023, 10, 126514. [Google Scholar] [CrossRef]
- Xu, Y.X.; Hu, C.; Chen, L.; Pei, F.; Du, Y. Effect of V-addition on the thermal stability and oxidation resistance of CrAlN coatings. Ceram. Int. 2018, 44, 7013–7019. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.X.; Zhang, H.; Wang, Q.; Wei, T.; Zhang, F.; Kim, K.H. Improving high-temperature wear resistance of arc-evaporated AlCrN coatings by Mo alloying. Surf. Coat. Technol. 2023, 456, 129253. [Google Scholar] [CrossRef]
- Arnell, R.D.; Colligon, J.S.; Minnebaev, K.F.; Yurasova, V.E. The effect of nitrogen content on the structure and mechanical properties of TiN films produced by magnetron sputtering. Vacuum 1996, 47, 425–431. [Google Scholar] [CrossRef]
- Yousif, A.E.; Nacy, S.M. The lubrication of conical journal bearings with bi-phase (liquid-solid) lubricants. Wear 1994, 172, 23–28. [Google Scholar] [CrossRef]
- Sanders, D.M.; Anders, A. Review of cathodic arc deposition technology at the start of the new millennium. Surf. Coat. Technol. 2000, 133–134, 78–90. [Google Scholar] [CrossRef]
- Iram, S.; Wang, J.; Cai, F.; Zhang, J.; Ahmad, F.; Liang, J.; Zhang, S. Effect of bilayer number on mechanical and wear behaviours of the AlCrN/AlCrMoN coatings by AIP method. Surf. Eng. 2021, 37, 536–544. [Google Scholar] [CrossRef]
- Lu, C.; Jia, J.; Fu, Y.; Yi, G.; Feng, X.; Yang, J.; Zhou, Q.; Xie, E.; Sun, Y. Influence of Mo contents on the tribological properties of CrMoN/MoS2 coatings at 25–700 °C. Surf. Coat. Technol. 2019, 378, 125072. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef]
- Sha, C.H.; Zhou, Z.F.; Xie, Z.H.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci. 2020, 507, 145101. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Toughness measurement of thin films: A critical review. Surf. Coat. Technol. 2005, 198, 74–84. [Google Scholar] [CrossRef]
- Sergevnin, V.S.; Blinkov, I.V.; Belov, D.S.; Smirnov, N.I.; Volkhonskii, A.O.; Kuptsov, K.A. Wear and erosion of arc-PVD multilayer Ti-Al-Mo-N coatings under various conditions of friction and loading. Int. J. Adv. Manuf. Technol. 2018, 98, 593–601. [Google Scholar] [CrossRef]
- Wang, Y.X.; Lou, B.Y.; Pan, J.; Zhang, X. High temperature oxidation resistance of CrMoAlN gradient coatings prepared by unbalanced magnetron sputtering. J. Nonferrous Met. 2017, 27, 1403–1410. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, B. Microstructure and High-Temperature Friction and Wear Properties of CrAlMoN Film. Oxid. Met. 2021, 95, 239–250. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Liu, J.H.; Yan, J.X.; Pei, Z.L.; Gong, J.; Sun, C. Effects of Mo content on the grain size, hardness and anti-wear performance of electrodeposited nanocrystalline and amorphous Ni-Mo alloys. Surf. Coat. Technol. 2020, 404, 126476. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Wang, X.; Wang, C.; Sun, H.; Zhang, H.; Jiang, T.; Yu, H.; Xu, L.; Wei, S. Optimizing Substrate Bias to Enhance the Microstructure and Wear Resistance of AlCrMoN Coatings via AIP. Coatings 2025, 15, 673. [Google Scholar] [CrossRef]
- Yang, C.-F.; Hu, C.-C.; Chang, C.-T.; Hsu, C.-C.; Lin, K.-Y.; Hsu, C.-Y. Microstructure and performances of MoN/CrMoN bi-layer coatings. J. Aust. Ceram. Soc. 2025, 61, 1027–1039. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Stachowski, N.; Dege, J.; Hintze, W.; Möller, C.; Ploog, P. Oxidation and wear behavior of CrAlMoN with varied Mo-content for cutting Ti6Al4V. Prod. Eng. 2024, 18, 87–97. [Google Scholar] [CrossRef]
- Qi, D.; Lei, H.; Wang, T.; Pei, Z.; Gong, J.; Sun, C. Mechanical, Microstructural and Tribological Properties of Reactive Magnetron Sputtered Cr–Mo–N Films. J. Mater. Sci. Technol. 2015, 31, 55–64. [Google Scholar] [CrossRef]
- Moussaoui, A.; Abboudi, A.; Aissani, L.; Belgroune, A.; Cheriet, A.; Alhussein, A.; Rtimi, S. Effect of Mo addition on the mechanical and tribological properties of magnetron sputtered TiN films. Surf. Coat. Technol. 2023, 470, 129862. [Google Scholar] [CrossRef]
- Camacho-López, M.A.; Escobar-Alarcón, L.; Picquart, M.; Arroyo, R.; Córdoba, G.; Haro-Poniatowski, E. Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Opt. Mater. 2011, 33, 480–484. [Google Scholar] [CrossRef]
- Iram, S.; Cai, F.; Wang, J.M.; Zhang, J.M.; Liang, J.G.; Ahmad, F.; Zhang, S.H. Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings. Coatings 2020, 10, 298. [Google Scholar] [CrossRef]
- Dubois, P.; Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J.F.O.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005, 130, 1395–1403. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Blanchet, T.A.; Gall, D. CrN–Ag nanocomposite coatings: High-temperature tribological response. Wear 2010, 269, 125–131. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Singh, D.P.; Stone, D.S.; Polychronopoulou, K.; Nahif, F.; Rebholz, C.; Muratore, C.; Voevodin, A.A. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C. Acta Mater. 2010, 58, 5326–5331. [Google Scholar] [CrossRef]
- Liu, Z.R.; Xu, Y.X.; Peng, B.; Wei, W.; Chen, L.; Wang, Q. Structure and property optimization of Ni-containing AlCrSiN coatings by nano-multilayer construction. J. Alloys Compd. 2019, 808, 151630. [Google Scholar] [CrossRef]
- Sun, H.; Li, G.H.; Yu, J.J.; Luo, J.; Rao, M.J.; Peng, Z.W.; Zhang, Y.B.; Jiang, T. Preparation of high purity MoO3 through volatilization of technical-grade Mo calcine in water vapor atmosphere. Int. J. Refract. Met. Hard Mater. 2018, 77, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Wang, L.; Xue, Z.L. Volatilization behavior of high-purity MoO3 in the range of 600 °C to 750 °C: Influences of water-vapor concentration and reaction temperature. Int. J. Refract. Met. Hard Mater. 2025, 132, 107264. [Google Scholar] [CrossRef]
- Solak, N.; Ustel, F.; Urgen, M.; Aydin, S.; Cakir, A.F. Oxidation behavior of molybdenum nitride coatings. Surf. Coat. Technol. 2003, 174–175, 713–719. [Google Scholar] [CrossRef]
















| Sample | Bias Voltage/V | N2 Flow Rate/sccm | Target Current/A | Deposition Time/min | ||
|---|---|---|---|---|---|---|
| CrAl | Cr | Mo | ||||
| Ar+ etching | −150 | 0 | 0 | 0 | 0 | 15 |
| Ar+ etching | −900 | 0 | 0 | 0 | 0 | 10 |
| CrN inter layer | −100 | 400 | 0 | 120 | 0 | 15 |
| CrAlN coating | −100 | 400 | 120 | 120 | 0 | 60 |
| CrAlMoN-1 coating | −100 | 400 | 120 | 120 | 120 | 60 |
| CrAlMoN-2 coating | −100 | 400 | 120 | 120 | 140 | 60 |
| CrAlMoN-3 coating | −100 | 400 | 120 | 120 | 160 | 60 |
| Coating | Elementary Composition (at%) | |||
|---|---|---|---|---|
| Cr | Al | Mo | N | |
| CrAlN | 34.71 | 20.07 | - | 45.22 |
| CrAlMoN-1 | 29.09 | 17.24 | 7.27 | 46.40 |
| CrAlMoN-2 | 24.25 | 14.14 | 15.56 | 46.05 |
| CrAlMoN-3 | 22.55 | 12.05 | 18.83 | 46.57 |
| Region | Elementary Composition (at%) | ||||
|---|---|---|---|---|---|
| Cr | Al | Mo | N | O | |
| A (RT) | 24.15 | 14.45 | 14.79 | 46.61 | - |
| B (RT) | 23.38 | 13.78 | 13.76 | 35.64 | 13.45 |
| C (600 °C) | 16.62 | 11.04 | 21.20 | 28.56 | 22.58 |
| D (600 °C) | 14.73 | 11.88 | 17.28 | - | 56.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, R.; Zhou, L.; Zhou, S.; Liu, H.; Chen, W.; Li, W.; Jiang, M. High-Temperature Mechanical Properties and Friction-Wear Performance of CrAlN Coatings Prepared by Arc Ion Plating via Mo Doping. Metals 2026, 16, 152. https://doi.org/10.3390/met16020152
Yang R, Zhou L, Zhou S, Liu H, Chen W, Li W, Jiang M. High-Temperature Mechanical Properties and Friction-Wear Performance of CrAlN Coatings Prepared by Arc Ion Plating via Mo Doping. Metals. 2026; 16(2):152. https://doi.org/10.3390/met16020152
Chicago/Turabian StyleYang, Rongjun, Lingxin Zhou, Songjie Zhou, Hongwu Liu, Weilin Chen, Weizhou Li, and Minming Jiang. 2026. "High-Temperature Mechanical Properties and Friction-Wear Performance of CrAlN Coatings Prepared by Arc Ion Plating via Mo Doping" Metals 16, no. 2: 152. https://doi.org/10.3390/met16020152
APA StyleYang, R., Zhou, L., Zhou, S., Liu, H., Chen, W., Li, W., & Jiang, M. (2026). High-Temperature Mechanical Properties and Friction-Wear Performance of CrAlN Coatings Prepared by Arc Ion Plating via Mo Doping. Metals, 16(2), 152. https://doi.org/10.3390/met16020152

