Data-Driven Performance-Oriented Rapid Process Optimization for 316 Stainless Steels Prepared by Laser Powder Bed Fusion
Abstract
1. Introduction
2. Material and Experimental Methods
2.1. Raw Material
2.2. LPBF Equipment and Process Parameters
2.3. Materials Testing and Characterization
2.4. Materials Properties-Process Analytical Modeling
3. Results
3.1. Relative Density
3.2. High-Throughput Tensile Testing
3.3. Process–Properties Analytical Model
3.4. Process Optimization and Verification
4. Discussion
4.1. Process–Microstructure–Properties Correlation for Optimal and Sub-Optimal Specimens
4.1.1. Phase Analysis
4.1.2. Grain Size and Morphology
4.1.3. Geometric Dislocation Density
4.2. Advantages of This Method
4.2.1. High Efficiency
4.2.2. Potential of Fine-Tuning Process Parameter for Customized Properties
5. Conclusions
- This new properties-oriented process optimization framework, based on a high-throughput testing platform and data analysis methods, is highly efficient, requiring 50 h to build the process–properties database and analytical model, as well as identify the processing parameters for the highest yield strength (YS).
- The constructed analytical model, based on 30 data points with corresponding process parameters and properties, has a coefficient of determination (R2) of 0.9465 and an adjusted R2 of 0.9224, demonstrating good agreement with the experimental results. The actual YS with the optimal process parameters deviates by only 0.26% from the model’s predicted value.
- The higher YS of the optimal specimen is attributed to its smaller grain size and higher dislocation density and grain boundary dislocations (GND), as revealed by detailed microstructure analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sefene, E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022, 63, 250–274. [Google Scholar] [CrossRef]
- Ishfaq, K.; Khan, M.D.A.; Khan, M.A.A.; Mahmood, M.A.; Maqsood, M.A. A correlation among industry 4.0, additive manufacturing, and topology optimization: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2023, 129, 3771–3797. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 12, 110008. [Google Scholar] [CrossRef]
- Yin, Y.; Tan, Q.; Bermingham, M.; Mo, N.; Zhang, J.; Zhang, M.-X. Laser additive manufacturing of steels. Int. Mater. Rev. 2022, 67, 487–573. [Google Scholar] [CrossRef]
- Huang, G.; He, G.; Gong, X.; He, Y.; Liu, Y.; Huang, K. Additive manufacturing of Invar 36 alloy. J. Mater. Res. Technol. 2024, 30, 1241–1268. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef]
- Collins, P.C.; Brice, D.A.; Samimi, P.; Ghamarian, I.; Fraser, H.L. Microstructural Control of Additively Manufactured Metallic Materials. Annu. Rev. Mater. Res. 2016, 46, 63–91. [Google Scholar] [CrossRef]
- Kong, D.; Ni, X.; Dong, C.; Zhang, L.; Man, C.; Cheng, X.; Li, X. Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting. Mater. Lett. 2019, 235, 1–5. [Google Scholar] [CrossRef]
- Casati, R.; Lemke, J.; Vedani, M. Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. J. Mater. Sci. Technol. 2016, 32, 738–744. [Google Scholar] [CrossRef]
- Suryawanshi, J.; Prashanth, K.G.; Ramamurty, U. Mechanical behavior of selective laser melted 316L stainless steel. Mater. Sci. Eng. A 2017, 696, 113–121. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 2002, 64, 495. [Google Scholar] [CrossRef]
- Armstrong, R.W. The (cleavage) strength of pre-cracked polycrystals. Eng. Fract. Mech. 1987, 28, 529–538. [Google Scholar] [CrossRef]
- Im, Y.D.; Kim, K.H.; Jung, K.H.; Lee, Y.K.; Song, K.H. Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel. Metall. Mater. Trans. A 2019, 50, 2014–2021. [Google Scholar] [CrossRef]
- Niendorf, T.; Leuders, S.; Riemer, A.; Richard, H.A.; Tröster, T.; Schwarze, D. Highly Anisotropic Steel Processed by Selective Laser Melting. Met. Mater. Trans. B 2013, 44, 794–796. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Tor, S.B.; Chua, C.K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. Npg Asia Mater. 2018, 10, 127–136. [Google Scholar] [CrossRef]
- Hitzler, L.; Hirsch, J.; Heine, B.; Merkel, M.; Hall, W.; Öchsner, A. On the Anisotropic Mechanical Properties of Selective Laser-Melted Stainless Steel. Materials 2017, 10, 1136. [Google Scholar] [CrossRef]
- Parry, L.; Ashcroft, I.A.; Wildman, R.D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Zeng, X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng. A 2017, 685, 265–273. [Google Scholar] [CrossRef]
- Additive Manufacturing of FeCrAl Alloys for Nuclear Applications—A focused Review|Semantic Scholar, (n.d.). Available online: https://www.semanticscholar.org/paper/Additive-manufacturing-of-FeCrAl-alloys-for-nuclear-Palaniappan-Joshi/4b81ac05df3f91e315e414099e841955d3211cd8 (accessed on 19 February 2025).
- Zhang, L.C.; Attar, H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Adv. Eng. Mater. 2016, 18, 463–475. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Yang, Y.; Lu, J.; Xu, Z.; Li, S.; Lin, K.; Zhang, D. Research on design optimization and manufacturing of coating pipes for automobile seal based on selective laser melting. J. Mater. Process. Technol. 2019, 273, 116227. [Google Scholar] [CrossRef]
- Hou, S.; Qi, S.; Hutt, D.A.; Tyrer, J.R.; Mu, M.; Zhou, Z. Three dimensional printed electronic devices realised by selective laser melting of copper/high-density-polyethylene powder mixtures. J. Mater. Process. Technol. 2018, 254, 310–324. [Google Scholar] [CrossRef]
- Diaz Vallejo, N.; Lucas, C.; Ayers, N.; Graydon, K.; Hyer, H.; Sohn, Y. Process Optimization and Microstructure Analysis to Understand Laser Powder Bed Fusion of 316L Stainless Steel. Metals 2021, 11, 832. [Google Scholar] [CrossRef]
- Huang, G.; Chen, H.; Ma, Z.; Zhang, R.; Pei, J.; Lie, Z.; Du, P.; Peng, X.; Liu, Y.; Huang, K. Microstructure and mechanical properties of stainless steel addictively manufactured via laser powder bed fusion in high-dense process parameter window. Mater. Sci. Eng. A 2025, 928, 148033. [Google Scholar] [CrossRef]
- Huang, K.; Kain, C.; Urbano, A.; Sarley, B. High throughput testing platform and application in wire arc additive manufactured superalloy: Anisotropy investigation and component qualification. Materialia 2021, 16, 101086. [Google Scholar] [CrossRef]
- Huang, K.; Kain, C.; Diaz-Vallejo, N.; Sohn, Y.; Zhou, L. High throughput mechanical testing platform and application in metal additive manufacturing and process optimization. J. Manuf. Process. 2021, 66, 494–505. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Wang, J.; Xu, L.; Wang, D. Process Parameter Optimization on Selective Laser Melting of CuSn10 Powders Based on Response Surface Methodology. J. Phys. Conf. Ser. 2022, 2262, 012002. [Google Scholar] [CrossRef]
- Montgomery: Design and Analysis of Experiments, 6th Edition-Student Comanion Site 2025. Available online: https://bcs.wiley.com/he-bcs/Books?action=index&itemId=047148735X&itemTypeId=BKS&bcsId=2172 (accessed on 1 January 2004).
- Zhou, T.; Shi, G.; Wu, Q.; Wang, Z.; Che, J.; Wu, H. Optimization of Cutting Parameters for Cubic Boron Nitride Tool Wear in Hard Turning AISI M2. J. Mater. Eng. Perform. 2024, 33, 11298–11308. [Google Scholar] [CrossRef]
- Guo, C.; He, S.; Yue, H.; Li, Q.; Hao, G. Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition. Opt. Laser Technol. 2021, 134, 106607. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, Q.; Wang, Z.; Zhao, G.; Li, S.; Guo, B.; Wu, H. Analysis of machined surface topography of AISI M2 in hard turning based on Box-Behnken Design. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2024, 238, 58–71. [Google Scholar] [CrossRef]
- Khorram, A.; Jamaloei, A.D.; Paidar, M.; Cao, X. Laser cladding of Inconel 718 with 75Cr3C2 + 25(80Ni20Cr) powder: Statistical modeling and optimization. Surf. Coat. Technol. 2019, 378, 124933. [Google Scholar] [CrossRef]
- Feng, Z.; Tan, H.; Fang, Y.; Lin, X.; Huang, W. Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior. J. Mater. Process. Technol. 2022, 299, 117386. [Google Scholar] [CrossRef]
- Radhakrishnan, R.M.; Ramamoorthi, V.; Srinivasan, R. Experimental investigation on powder processing and its flow properties of AlSi10Mg alloy with niobium carbide for additive manufacturing. Proc. Inst. Mech. Eng. Part. E J. Process Mech. Eng. 2022, 236, 1421–1429. [Google Scholar] [CrossRef]
- Tolosa, I.; Garciandía, F.; Zubiri, F.; Zapirain, F.; Esnaola, A. Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 2010, 51, 639–647. [Google Scholar] [CrossRef]
- Zinoviev, A.; Zinovieva, O.; Ploshikhin, V.; Romanova, V.; Balokhonov, R. Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Mater. Des. 2016, 106, 321–329. [Google Scholar] [CrossRef]
- Huang, G.; He, G.; Peng, X.; He, Y.; Chen, H.; Huang, K.; Liu, Y. Effect of processing parameters on the microstructure, mechanical properties and thermal expansion behavior of Invar 36 alloy manufactured by laser powder bed fusion. Mater. Sci. Eng. A 2024, 897, 146329. [Google Scholar] [CrossRef]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef]
- Wang, F.Z.; Zhang, C.H.; Cui, X.; Zhou, F.Q.; Zhang, S.; Chen, H.T.; Chen, J. Effect of Energy Density on the Defects, Microstructure, and Mechanical Properties of Selective-Laser-Melted 24CrNiMo Low-Alloy Steel. J. Mater. Eng. Perform. 2022, 31, 3520–3534. [Google Scholar] [CrossRef]
- Sun, Q.; Du, D.; He, L.; Dong, A.; Zhang, C.; Sun, B. Laser powder bed fusion of a non-equiatomic FeNiCoAl-based high-entropy alloy: Printability, microstructure, and mechanical properties. J. Alloys Compd. 2023, 938, 168562. [Google Scholar] [CrossRef]
- Marchese, G.; Parizia, S.; Rashidi, M.; Saboori, A.; Manfredi, D.; Ugues, D.; Lombardi, M.; Hryha, E.; Biamino, S. The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion. Mater. Sci. Eng. A 2020, 769, 138500. [Google Scholar] [CrossRef]
Elements | Fe | Cr | Ni | Mo | Si | Mn | P | S | C | N |
---|---|---|---|---|---|---|---|---|---|---|
ASTM A240 [12] | Bal. | 16–18 | 10–14 | 2–3 | 0.50 | 2 | 0.045 | 0.03 | 0.03 | 0.1 |
SS316L | Bal. | 17.12 | 11.01 | 2.54 | 0.31 | 0.66 | 0.005 | 0.006 | 0.021 | 0.002 |
No. | P (W) | V (mm/s) | H (μm) | VED (J/mm3) |
---|---|---|---|---|
1 | 150 | 600 | 80 | 104.2 |
2 | 150 | 600 | 100 | 83.3 |
3 | 150 | 600 | 120 | 69.4 |
4 | 150 | 800 | 80 | 78.1 |
5 | 150 | 800 | 100 | 62.5 |
6 | 150 | 800 | 120 | 52.1 |
7 | 150 | 1000 | 80 | 62.5 |
8 | 150 | 1000 | 100 | 50.0 |
9 | 150 | 1000 | 120 | 41.7 |
10 | 175 | 600 | 80 | 121.5 |
11 | 175 | 600 | 100 | 97.2 |
12 | 175 | 600 | 120 | 81.0 |
13 | 175 | 800 | 80 | 91.1 |
14 | 175 | 800 | 100 | 72.9 |
15 | 175 | 800 | 120 | 60.8 |
16 | 175 | 1000 | 80 | 72.9 |
17 | 175 | 1000 | 100 | 58.3 |
18 | 175 | 1000 | 120 | 48.6 |
19 | 200 | 600 | 80 | 138.9 |
20 | 200 | 600 | 100 | 111.1 |
21 | 200 | 600 | 120 | 92.6 |
22 | 200 | 800 | 80 | 104.2 |
23 | 200 | 800 | 100 | 83.3 |
24 | 200 | 800 | 120 | 69.4 |
25 | 200 | 1000 | 80 | 83.3 |
26 | 200 | 1000 | 100 | 66.7 |
27 | 200 | 1000 | 120 | 55.6 |
28 | 225 | 600 | 80 | 156.3 |
29 | 225 | 600 | 100 | 125.0 |
30 | 225 | 600 | 120 | 104.2 |
31 | 225 | 800 | 80 | 117.2 |
32 | 225 | 800 | 100 | 93.8 |
33 | 225 | 800 | 120 | 78.1 |
34 | 225 | 1000 | 80 | 93.8 |
35 | 225 | 1000 | 100 | 75.0 |
36 | 225 | 1000 | 120 | 62.5 |
No. | P (W) | V (mm/s) | H (μm) | YS (MPa) | YS (%) |
---|---|---|---|---|---|
1 | 150 | 600 | 80 | 503.57 ± 11.44 | 51.38 ± 1.18 |
2 | 150 | 600 | 100 | 526.99 ± 2.91 | 50.18 ± 1.12 |
3 | 150 | 800 | 80 | 509.85 ± 2.54 | 49.56 ± 0.60 |
4 | 150 | 800 | 120 | 518.40 ± 1.08 | 46.13 ± 0.67 |
5 | 150 | 1000 | 80 | 512.01 ± 1.58 | 46.39 ± 1.23 |
6 | 150 | 1000 | 120 | 508.40 ± 4.45 | 49.11 ± 1.08 |
7 | 175 | 600 | 80 | 478.80 ± 4.71 | 50.27 ± 2.05 |
8 | 175 | 600 | 100 | 500.44 ± 0.47 | 50.27 ± 0.74 |
9 | 175 | 600 | 120 | 517.90 ± 2.61 | 53.55 ± 1.54 |
10 | 175 | 800 | 80 | 503.43 ± 2.11 | 51.36 ± 1.59 |
11 | 175 | 800 | 100 | 517.50 ± 3.28 | 49.74 ± 1.72 |
12 | 175 | 800 | 120 | 526.8 ± 3.24 | 48.26 ± 0.06 |
13 | 175 | 1000 | 80 | 511.35 ± 2.26 | 49.11 ± 1.82 |
14 | 175 | 1000 | 100 | 520.95 ± 1.76 | 48.15 ± 0.67 |
15 | 175 | 1000 | 120 | 502.36 ± 2.78 | 46.22 ± 1.11 |
16 | 200 | 600 | 80 | 457.26 ± 5.61 | 47.55 ± 2.32 |
17 | 200 | 600 | 100 | 480.14 ± 4.84 | 43.22 ± 1.74 |
18 | 200 | 600 | 120 | 485.67 ± 6.61 | 48.64 ± 0.89 |
19 | 200 | 800 | 80 | 482.93 ± 3.76 | 45.42 ± 1.12 |
20 | 200 | 800 | 100 | 497.67 ± 2.09 | 49.73± 3.67 |
21 | 200 | 800 | 120 | 513.63 ± 4.49 | 47.04 ± 0.88 |
22 | 200 | 1000 | 80 | 496.89 ± 6.22 | 49.10 ± 0.86 |
23 | 200 | 1000 | 120 | 528.28 ± 1.57 | 47.08± 1.99 |
24 | 225 | 600 | 100 | 450.75 ± 3.19 | 46.02± 0.66 |
25 | 225 | 600 | 120 | 463.78 ± 4.38 | 40.47± 5.93 |
26 | 225 | 800 | 80 | 449.18 ± 1.65 | 45.78 ± 3.73 |
27 | 225 | 800 | 100 | 485.52 ± 4.31 | 43.47 ± 0.88 |
28 | 225 | 800 | 120 | 487.16 ± 6.66 | 44.00 ± 0.36 |
29 | 225 | 1000 | 80 | 490.42 ± 5.62 | 47.81 ± 0.86 |
30 | 225 | 1000 | 100 | 498.94 ± 3.78 | 45.89 ± 0.49 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F | Significant |
---|---|---|---|---|---|---|
Model | 13,317.10 | 9 | 1479.68 | 39.30 | <0.0001 | Significant |
P | 6388.05 | 1 | 6388.05 | 169.67 | <0.0001 | |
V | 2798.96 | 1 | 2798.96 | 74.39 | <0.0001 | |
H | 2606.45 | 1 | 2606.45 | 69.23 | <0.0001 | |
PV | 2247.50 | 1 | 2247.50 | 59.70 | <0.0001 | |
PH | 426.26 | 1 | 426.26 | 11.32 | 0.0031 | |
VH | 481.05 | 1 | 481.05 | 12.78 | 0.0019 | |
P2 | 438.99 | 1 | 438.99 | 11.66 | 0.0027 | |
V2 | 159.48 | 1 | 159.48 | 4.24 | 0.0528 | |
H2 | 300.50 | 1 | 300.50 | 7.98 | 0.0105 | |
Residual | 752.98 | 20 | 37.65 | |||
Cor Total | 14,070.08 | 29 |
Std. Dev. | Mean | C.V. % | R2 | Adjusted | Predicted | Adeq Precision |
---|---|---|---|---|---|---|
6.14 | 497.52 | 1.23 | 0.9465 | 0.9224 | 0.8765 | 21.5008 |
P (W) | V (mm/s) | H (μm) | YS (MPa) | Coefficient of Variation | ||
---|---|---|---|---|---|---|
optimal | Predicted | 153.34 | 666.62 | 113.54 | 527.04 | |
Actual-1 | 150 | 700 | 110 | 529.476 | 0.88% | |
Actual-2 | 150 | 700 | 110 | 524.542 | ||
Actual-3 | 150 | 700 | 110 | 520.214 | ||
sub-optimal | Predicted | 222.12 | 805.34 | 84.46 | 432.46 | |
Actual-1 | 225 | 800 | 80 | 451.511 | 0.45% | |
Actual-2 | 225 | 800 | 80 | 448.086 | ||
Actual-3 | 225 | 800 | 80 | 447.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Jiang, M.; Huang, G.; Huang, K. Data-Driven Performance-Oriented Rapid Process Optimization for 316 Stainless Steels Prepared by Laser Powder Bed Fusion. Metals 2025, 15, 968. https://doi.org/10.3390/met15090968
Zhu J, Jiang M, Huang G, Huang K. Data-Driven Performance-Oriented Rapid Process Optimization for 316 Stainless Steels Prepared by Laser Powder Bed Fusion. Metals. 2025; 15(9):968. https://doi.org/10.3390/met15090968
Chicago/Turabian StyleZhu, Junyan, Meiling Jiang, Guoliang Huang, and Ke Huang. 2025. "Data-Driven Performance-Oriented Rapid Process Optimization for 316 Stainless Steels Prepared by Laser Powder Bed Fusion" Metals 15, no. 9: 968. https://doi.org/10.3390/met15090968
APA StyleZhu, J., Jiang, M., Huang, G., & Huang, K. (2025). Data-Driven Performance-Oriented Rapid Process Optimization for 316 Stainless Steels Prepared by Laser Powder Bed Fusion. Metals, 15(9), 968. https://doi.org/10.3390/met15090968