A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study
Abstract
1. Introduction
2. Search Strategy
3. Trends and Insights
3.1. Early Developments—Years 2010 to 2015
3.2. Year 2016
3.3. Year 2017
3.4. Year 2018
3.5. Year 2019
3.6. Year 2020
3.7. Year 2021
3.8. Year 2022
3.9. Year 2023
3.10. Year 2024
3.11. Year 2025
3.12. Categorization of Reviewed Papers
4. Challenges
- Geometric complexity and multi-material deposition: Freeform geometries, thin walls, and layer-wise material transitions introduce significant spatial and material complexity. These factors demand adaptive path planning and location-aware ML models that most current approaches do not accommodate.
- Lack of standardized geometric representations: Multi-axis toolpaths and curved geometries lack consistent representations, making it difficult to encode spatial features for ML training, especially for microstructure prediction and property mapping.
- Temporal and in-process transients: As shown in Figure 7 and Figure 8, subtle power fluctuations and changes in toolpaths result in dynamic variations (e.g., bead width, microhardness) that static feature models fail to capture. Temporal models like RNNs and CNNs struggle with short sequences, overfitting, and generalization.
- Spatially varying mechanical effects: Location-specific phenomena, such as stress accumulation, strain localization, and distortion, are often excluded from ML models. However, mechanical effects vary significantly based on deposition position (edges, corners, centers), affecting anisotropy and final part quality.
- High computational cost of training data: Generating labeled datasets using FEM simulations with thermal–mechanical coupling is time-consuming and resource-intensive, restricting the size and diversity of training datasets.
- Limited experimental data and labeling challenges: Acquiring high-quality labels (e.g., microstructure or stress maps) is experimentally challenging. As a result, unsupervised or semi-supervised methods are often employed, though they lack interpretability and robustness.
- Lack of consensus on ML techniques: A wide range of methods, including regression, neural networks, clustering, fuzzy logic, and deep learning, have been explored without a clear consensus. Few studies compare different ML methods under identical conditions to determine best practices.
- Underexplored research areas: Key applications such as real-time closed-loop control, defect classification, and multi-objective predictions (e.g., combining thermal and mechanical outcomes) are still in their infancy and deserve more focused investigation.
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACO | Ant Colony Optimization |
AI | Artificial intelligence |
AM | Additive manufacturing |
API | Application programming interface |
CNN | Convolutional neural network |
DED | Directed energy deposition |
EBM | Electron beam melting |
FEM | Finite element method |
GRU | Gated recurrent unit |
LME | Linear mixed effects |
LSTM | Long Short-Term Memory |
ML | Machine learning |
NN | Neural network |
PCA | Principal component analysis |
PIML | Physics-informed machine learning |
RNN | Recurrent neural network |
SLM | Selective laser melting |
SOM | Self-organizing map |
SVM | Support vector machine |
WAAM | Wire arc additive manufacturing |
Appendix A
- import requests
- import~time
- # Helper function to check if a keyword from ’keyword1_list’ and a keyword from ’keyword2_list’ are in the title or abstract
- def check_exact_match(item, keyword1, keyword2):
- title = item.get(’title’, [’’])[0].lower()
- abstract = item.get(’abstract’, ’’).lower()
- # Perform a looser match for title and abstract
- return (keyword1.lower() in title or keyword1.lower() in abstract) and (
- keyword2.lower() in title or keyword2.lower() in abstract)
- # Function to query papers with pagination for a single ’keyword1’ and ’keyword2’
- def get_papers_by_keyword(keyword1, keyword2, start_year, end_year):
- url = "https://api.crossref.org/works"
- all_papers = []
- rows = 1000 # Number of results per request
- offset = 0 # Start point for~results
- while True:
- # Make API request with pagination
- params = {
- "query.bibliographic": f’{keyword1} {keyword2}’,
- "filter": f"from-pub-date:{start_year},until-pub-date:{end_year}",
- "rows": rows,
- "offset": offset
- }
- response = requests.get(url, params=params)
- if response.status_code == 200:
- data = response.json()
- if ’message’ in data and ’items’ in data[’message’]:
- # Filter the results to ensure exact match
- papers = [item for item in data[’message’][’items’] if check_exact_match (item, keyword1, keyword2)]
- all_papers.extend(papers)
- # Check if we’ve received fewer results than the limit, indicating no more results
- if len(papers) < rows:
- break
- # Update the offset for the next "page" of results
- offset += rows
- else:
- break
- else:
- break
- return~all_papers
- # Function to get papers by combining results for all combinations of ’keyword1’ and ’keyword2’
- def get_papers_combined(keyword1_list, keyword2, start_year, end_year):
- all_papers = []
- # Query for each keyword1 combined with keyword2
- for keyword1 in keyword1_list:
- papers = get_papers_by_keyword(keyword1, keyword2, start_year, end_year)
- all_papers.extend(papers)
- return~all_papers
- # Function to remove duplicates based on title
- def remove_duplicates(papers, global_seen_titles):
- unique_papers = []
- for paper in papers:
- title = paper.get(’title’, [’’])[0].lower()
- if title not in global_seen_titles:
- global_seen_titles.add(title)
- unique_papers.append(paper)
- return~unique_papers
- # Example usage:
- k1_list = ["direct energy deposition", "beads clad", "wire arc", "Laser Cladding",
- "Metal Deposition","Directed Energy Deposition"]
- k2_list = ["clustering","machine learning", "machine-learning", "unsupervised", "supervised",
- "artificial intelligence","data-driven", "Reinforcement learning","Decision tree", "Regression",
- "Neural network","Principal component analysis", "Random forest","K-means","Support Vector Machine",
- "K-nearest","Fuzzy", "Deep learning"]
- start_year = 2010
- end_year = 2024
- global_seen_titles = set()
- paper_count_dict = {} # Dictionary to store paper count for each~keyword2
- # Loop through each keyword2 and get all keyword1 results, ensuring no duplicates across keyword2
- for keyword2 in k2_list:
- start_time = time.time()
- # Get papers for the current ’keyword2’ and all ’keyword1’s
- combined_papers = get_papers_combined(k1_list, keyword2, start_year, end_year)
- # Remove duplicates based on the global set of seen titles
- unique_papers = remove_duplicates(combined_papers, global_seen_titles)
- # Update the count for this ’keyword2’
- paper_count_dict[keyword2] = len(unique_papers)
- # Print the total number of unique papers for this ’keyword2’
- # print(f"Total number of unique papers for ’{keyword2}’ in {(time.time() - start_time):.1f} seconds: {len(unique_papers)}")
- print(f"{len(unique_papers)}")
- # Create a separate file for each ’keyword2’
- file_name = f"papers_{keyword2.replace(’ ’, ’_’)}.txt"
- with open(file_name, ’w’, encoding=’utf-8’) as f:
- for i, paper in enumerate(unique_papers, start=1):
- title = paper.get(’title’, [’No title’])[0]
- journal = paper.get(’container-title’, [’No journal name’])[0]
- year = paper.get(’published-print’, {}).get(’date-parts’, [[None]])[0][0] or ’No year available’
- authors = ’, ’.join([f"{author.get(’given’, ’’)} {author.get(’family’, ’’)}" for author in paper.get(’author’, [])])
- # Write paper details into the file
- f.write(f"{i}. Title: {title}\n")
- f.write(f" Journal: {journal}\n")
- f.write(f" Year: {year}\n")
- f.write(f" Authors: {authors}\n")
- f.write("\n")
- # Print out the total counts for each ’keyword2’
- print("Paper counts for each ’keyword2’:", paper_count_dict)
- print("Total sum of papers across all keyword2:", sum(paper_count_dict.values()))
References
- Gazuko, I.V.; Krapivin, L.L.; Mirkin, L.I. Use of laser-beam heating for the sintering of powders and chemicothermal treatment of metal surfaces. Sov. Powder Metall. Met. Ceram. 1974, 13, 21–23. [Google Scholar] [CrossRef]
- Kruth, J.P. Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Ann. 1991, 40, 603–614. [Google Scholar] [CrossRef]
- Sachs, E.; Cima, M.; Cornie, J.; Brancazio, D.; Bredt, J.; Curodeau, A.; Fan, T.; Khanuja, S.; Lauder, A.; Lee, J.; et al. Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing. CIRP Ann. 1993, 42, 257–260. [Google Scholar] [CrossRef]
- Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S.M. An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 2015, 8, 12–35. [Google Scholar] [CrossRef]
- Zafar, F.; Emadinia, O.; Conceição, J.; Vieira, M.; Reis, A. A Review on Direct Laser Deposition of Inconel 625 and Inconel 625-Based Composites–Challenges and Prospects. Metals 2023, 13, 787. [Google Scholar] [CrossRef]
- Sibisi, P.N.; Popoola, A.P.I.; Arthur, N.K.K.; Pityana, S.L. Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2020, 107, 1163–1178. [Google Scholar] [CrossRef]
- Babuska, T.F.; Krick, B.A.; Susan, D.F.; Kustas, A.B. Comparison of powder bed fusion and directed energy deposition for tailoring mechanical properties of traditionally brittle alloys. Manuf. Lett. 2021, 28, 30–34. [Google Scholar] [CrossRef]
- Kistler, N.A.; Corbin, D.J.; Nassar, A.R.; Reutzel, E.W.; Beese, A.M. Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition. J. Mater. Process. Technol. 2019, 264, 172–181. [Google Scholar] [CrossRef]
- Mirazimzadeh, S.E.; Mohajernia, B.; Pazireh, S.; Urbanic, J.; Jianu, O. Investigation of residual stresses of multi-layer multi-track components built by directed energy deposition: Experimental, numerical, and time-series machine-learning studies. Int. J. Adv. Manuf. Technol. 2024, 130, 329–351. [Google Scholar] [CrossRef]
- Zarinejad, M.; Tong, Y.; Salehi, M.; Mu, C.; Wang, N.; Xu, Y.; Rimaz, S.; Tian, L.; Kuah, K.X.; Chen, X. Advancements and Perspectives in Additive Manufacturing of Tungsten Alloys and Composites: Challenges and Solutions. Crystals 2024, 14, 665. [Google Scholar] [CrossRef]
- Younes Araghi, M.; Dashti, A.; Fani, M.; Ghamarian, I.; Ruiz, C.; Xu, S. Melt-based additive manufacturing of refractory metals and alloys: Experiments and modeling. J. Mater. Res. Technol. 2025, 37, 870–892. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Elkatatny, S.; Sebaey, T.A.; Darwish, M.A.; Abd El-Baky, M.A.; hamada, A. Machine learning for advancing laser powder bed fusion of stainless steel. J. Mater. Res. Technol. 2024, 30, 4986–5016. [Google Scholar] [CrossRef]
- Soni, N.; Renna, G.; Leo, P. Advancements in Metal Processing Additive Technologies: Selective Laser Melting (SLM). Metals 2024, 14, 1081. [Google Scholar] [CrossRef]
- Lim, J.S.; Oh, W.J.; Lee, C.M.; Kim, D.H. Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods. Sci. Rep. 2021, 11, 24169. [Google Scholar] [CrossRef]
- Pandey, S.; Srivastava, R.; Narain, R. Mathematical prediction of melt pool geometry and temperature profile for direct energy deposition of 15Cr5Ni SS alloy. Prog. Addit. Manuf. 2023, 8, 1127–1140. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Sutton, R.S. Introduction: The Challenge of Reinforcement Learning. In Reinforcement Learning; Sutton, R.S., Ed.; Springer: Boston, MA, USA, 1992; pp. 1–3. [Google Scholar] [CrossRef]
- Era, I.Z.; Farahani, M.A.; Wuest, T.; Liu, Z. Machine learning in Directed Energy Deposition (DED) additive manufacturing: A state-of-the-art review. Manuf. Lett. 2023, 35, 689–700. [Google Scholar] [CrossRef]
- Vashishtha, G.; Chauhan, S.; Zimroz, R.; Yadav, N.; Kumar, R.; Gupta, M.K. Current Applications of Machine Learning in Additive Manufacturing: A Review on Challenges and Future Trends. Arch. Comput. Methods Eng. 2025, 32, 2635–2668. [Google Scholar] [CrossRef]
- Zeinali, M.; Khajepour, A. Development of an adaptive fuzzy logic-based inverse dynamic model for laser cladding process. Eng. Appl. Artif. Intell. 2010, 23, 1408–1419. [Google Scholar] [CrossRef]
- Zeinali, M.; Khajepour, A. Adaptive fuzzy sliding mode control design for laser metal deposition. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 6115–6120. [Google Scholar] [CrossRef]
- Farshidianfar, M.H.; Khajepour, A.; Zeinali, M.; Gelrich, A. System identification and height control of laser cladding using adaptive neuro-fuzzy inference systems. In Proceedings of the 32nd International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Miami, FL, USA, 6–10 October 2013. [Google Scholar] [CrossRef]
- Xu, Z.M.; Wu, H.B.; Hong, Z.H. Quality Prediction of Laser Cladding Based on Evolutionary Neural Network. Appl. Mech. Mater. 2011, 44–47, 1012–1017. [Google Scholar] [CrossRef]
- Niu, Z.W.; Song, K.; Li, Z.Y.; Wang, F.F. Process Parameters Optimization for Green Manufacturing of Laser Cladding Based on Artificial Neural Network. Adv. Mater. Res. 2010, 97–101, 2310–2313. [Google Scholar] [CrossRef]
- Ni, L.; Liu, J.; Wu, Y.; Yan, C. Optimization of laser cladding process based on neural network and particle swarm optimization. Chin. J. Lasers 2011, 38, 0203003. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, W.; Wang, J.; Yang, G. Analysis of Process Parameters about Direct Laser Metal Deposition Shaping Process of Titanium Alloys Based on Logistic Regression Model. Chin. J. Lasers 2011, 38, 1103005-6. [Google Scholar] [CrossRef]
- Mondal, S.; Bandyopadhyay, A.; Pal, P.K. Application of artificial neural network for the prediction of laser cladding process characteristics at Taguchi-based optimized condition. Int. J. Adv. Manuf. Technol. 2014, 70, 2151–2158. [Google Scholar] [CrossRef]
- Hartz-Behrend, K.; Kirner, S.; Schein, J.; Jonke, D.P.; Englhart, M.; Zierhut, J. Control of Wire Arc Spraying Using Artificial Neural Networks for the Production of Thin-Walled Moulds for Carbon Fiber Reinforced Plastics. In Proceedings of the ITSC 2012, Houston, TX, USA, 21–24 May 2012. [Google Scholar] [CrossRef]
- Zhang, Q.; Anyakin, M.; Zhuk, R.; Pan, Y.; Kovalenko, V.; Yao, J. Application of Regression Designs for Simulation of Laser Cladding. Phys. Procedia 2012, 39, 921–927. [Google Scholar] [CrossRef]
- Hartz-Behrend, K.; Schaup, J.; Zierhut, J.; Schein, J. Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN). J. Therm. Spray Technol. 2016, 25, 21–27. [Google Scholar] [CrossRef]
- Urbanic, R.J.; Saqib, S.M.; Aggarwal, K. Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships. J. Manuf. Sci. Eng. 2016, 138, 051012. [Google Scholar] [CrossRef]
- Yan, J.; Battiato, I.; Fadel, G. Design of injection nozzle in direct metal deposition (DMD) manufacturing of thin-walled structures based on 3D models. Int. J. Adv. Manuf. Technol. 2017, 91, 605–616. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z. Research on laser cladding control system based on fuzzy PID. IOP Conf. Ser. Mater. Sci. Eng. 2017, 274, 012168. [Google Scholar] [CrossRef]
- Gaja, H.; Liou, F. Defect classification of laser metal deposition using logistic regression and artificial neural networks for pattern recognition. Int. J. Adv. Manuf. Technol. 2018, 94, 315–326. [Google Scholar] [CrossRef]
- Mozaffar, M.; Paul, A.; Al-Bahrani, R.; Wolff, S.; Choudhary, A.; Agrawal, A.; Ehmann, K.; Cao, J. Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manuf. Lett. 2018, 18, 35–39. [Google Scholar] [CrossRef]
- Caiazzo, F.; Caggiano, A. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning. Materials 2018, 11, 44. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, P.F.; Bai, P.K.; Zhao, Z.Y.; Liu, B. Analysis of Geometrical Characteristics and Properties of Laser Cladding 85 wt.% Ti + 15 wt.% TiBCN Powder on 7075 Aluminum Alloy Substrate. Materials 2018, 11, 1551. [Google Scholar] [CrossRef]
- Nam, S.; Cho, H.; Kim, C.; Kim, Y.M. Effect of Process Parameters on Deposition Properties of Functionally Graded STS 316/Fe Manufactured by Laser Direct Metal Deposition. Metals 2018, 8, 607. [Google Scholar] [CrossRef]
- Che, L.; Sun, W.L.; Zhang, G.; Han, J. Optimization of laser cladding process for additive repair of high temperature and high pressure valve sealing surface. Mater. Sci. Mater. Rev. 2019, 3. [Google Scholar] [CrossRef]
- Li, J.; Sage, M.; Guan, X.; Brochu, M.; Zhao, Y.F. Machine Learning-Enabled Competitive Grain Growth Behavior Study in Directed Energy Deposition Fabricated Ti6Al4V. JOM 2020, 72, 458–464. [Google Scholar] [CrossRef]
- Hongyu, L.; Hui, C.; Ying, W.; Yong, C.; Wei, Y. Prediction of two-dimensional topography of laser cladding based on neural network. Int. J. Mod. Phys. B 2019, 33, 1940034. [Google Scholar] [CrossRef]
- Yu, J.; Sun, W.; Huang, H.; Wang, W.; Wang, Y.; Hu, Y. Crack Sensitivity Control of Nickel-Based Laser Coating Based on Genetic Algorithm and Neural Network. Coatings 2019, 9, 728. [Google Scholar] [CrossRef]
- Gonçalves, D.A.; Stemmer, M.R.; Pereira, M. A convolutional neural network approach on bead geometry estimation for a laser cladding system. Int. J. Adv. Manuf. Technol. 2020, 106, 1811–1821. [Google Scholar] [CrossRef]
- Chakraborty, S.S.; Dutta, S. Estimation of dilution in laser cladding based on energy balance approach using regression analysis. Sādhanā 2019, 44, 150. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Bai, P.; Su, K.; Su, H. TiBCN-Ceramic-Reinforced Ti-Based Coating by Laser Cladding: Analysis of Processing Conditions and Coating Properties. Coatings 2019, 9, 407. [Google Scholar] [CrossRef]
- Korsmik, R.S.; Turichin, G.A.; Zadykyan, G.G.; Zhitenev, A.I. Investigation of Crystallization Process of a Single Crystal Nickel-Based Alloy during the Laser Multilayer Cladding. Key Eng. Mater. 2019, 822, 481–488. [Google Scholar] [CrossRef]
- Piscopo, G.; Atzeni, E.; Salmi, A. A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition. Materials 2019, 12, 2819. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, W.; Zhan, X.; Ding, L.; Wang, E. Optimization of dilution rate of laser cladding repair based on deep learning. Int. J. Adv. Manuf. Technol. 2020, 110, 1471–1484. [Google Scholar] [CrossRef]
- Guo, W.G.; Tian, Q.; Guo, S.; Guo, Y. A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition. CIRP Ann. 2020, 69, 205–208. [Google Scholar] [CrossRef]
- Li, X.; Siahpour, S.; Lee, J.; Wang, Y.; Shi, J. Deep Learning-Based Intelligent Process Monitoring of Directed Energy Deposition in Additive Manufacturing with Thermal Images. Procedia Manuf. 2020, 48, 643–649. [Google Scholar] [CrossRef]
- Linsen, S.; Bo, W.; Yayin, H. Optimization of Process Parameters of Laser Cladding 304LAlloy Powder Based on Orthogonal Experiment. Mech. Eng. Sci. 2020, 1, 18–24. [Google Scholar] [CrossRef]
- Prajapati, V.; Dinbandhu; Vora, J.J.; Das, S.; Abhishek, K. Study of parametric influence and welding performance optimization during regulated metal deposition (RMD™) using grey integrated with fuzzy taguchi approach. J. Manuf. Process. 2020, 54, 286–300. [Google Scholar] [CrossRef]
- Oh, X.Y.; Soh, G.S. A Study on the Machine Learning Framework for the Geometric Modelling of Wire Arc Bead Profile. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2020. [Google Scholar] [CrossRef]
- Kao, I.H.; Hsu, Y.W.; Lai, Y.H.; Perng, J.W. Laser Cladding Quality Monitoring Using Coaxial Image Based on Machine Learning. IEEE Trans. Instrum. Meas. 2020, 69, 2868–2880. [Google Scholar] [CrossRef]
- Ertveldt, J.; Guillaume, P.; Helsen, J. MiCLAD as a platform for real-time monitoring and machine learning in laser metal deposition. Procedia CIRP 2020, 94, 456–461. [Google Scholar] [CrossRef]
- Juhasz, M. Machine Learning Predictions of Single Clad Geometry in Directed Energy Deposition. OSF, 2020; preprint. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Shukla, M. Laser Additive Manufacturing- Direct Energy Deposition of Ti-15Mo Biomedical Alloy: Artificial Neural Network Based Modeling of Track Dilution. Lasers Manuf. Mater. Process. 2020, 7, 245–258. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, T.; Wang, H.; Li, S.; Liu, D. Process Parameter Optimization When Preparing Ti(C, N) Ceramic Coatings Using Laser Cladding Based on a Neural Network and Quantum-Behaved Particle Swarm Optimization Algorithm. Appl. Sci. 2020, 10, 6331. [Google Scholar] [CrossRef]
- Zhu, H.; Tong, Y.; Ge, Z. Study on Optimization of BP-GA Method Applied to Shaft Laser Cladding Repairing Technology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 022050. [Google Scholar] [CrossRef]
- García-Moreno, A.I.; Alvarado-Orozco, J.M.; Ibarra-Medina, J.; Martínez-Franco, E. Image-based porosity classification in Al-alloys by laser metal deposition using random forests. Int. J. Adv. Manuf. Technol. 2020, 110, 2827–2845. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L.; Fuh, J.Y.H.; Zhang, H.; Yan, W. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Opt. Lasers Eng. 2020, 127, 105950. [Google Scholar] [CrossRef]
- Lee, S.H. Optimization of Cold Metal Transfer-Based Wire Arc Additive Manufacturing Processes Using Gaussian Process Regression. Metals 2020, 10, 461. [Google Scholar] [CrossRef]
- Kästner, C.; Neugebauer, M.; Schricker, K.; Bergmann, J.P. Strategies for Increasing the Productivity of Pulsed Laser Cladding of Hot-Crack Susceptible Nickel-Base Superalloy Inconel 738 LC. J. Manuf. Mater. Process. 2020, 4, 84. [Google Scholar] [CrossRef]
- Niu, Y.; Sun, Z.; Wang, Y.; Niu, J. Phenomenological Constitutive Models for Hot Deformation Behavior of Ti6Al4V Alloy Manufactured by Directed Energy Deposition Laser. Metals 2020, 10, 1496. [Google Scholar] [CrossRef]
- Chua, B.L.; Ahn, D.G. Estimation Method of Interpass Time for the Control of Temperature during a Directed Energy Deposition Process of a Ti-6Al-4V Planar Layer. Materials 2020, 13, 4935. [Google Scholar] [CrossRef] [PubMed]
- Rojas, H.F.; Guzmán, M.A.; Luna, O.E.; Aragón, D.F. Methodology for Optimization of the Electric Wire Arc—Spraying Process to the Mixture of Coatings 140MXC-530AS and 140MXC-560AS Using a Multi-objective Genetic Algorithm. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, X.; Chen, C.; Lian, G.; Huang, X. An Integrated Method for Multi-Objective Optimization of Multi-Pass Fe50/TiC Laser Cladding on AISI 1045 Steel based on Grey Relational Analysis and Principal Component Analysis. Coatings 2020, 10, 151. [Google Scholar] [CrossRef]
- Cui, L.J.; Zhang, M.; Guo, S.R.; Cao, Y.L.; Zeng, W.H.; Li, X.l.; Zheng, B. Multi-objective numerical simulation of geometrical characteristics of laser cladding of cobalt-based alloy based on response surface methodology. Meas. Control 2020, 54, 1125–1135. [Google Scholar] [CrossRef]
- Dharmawan, A.G.; Xiong, Y.; Foong, S.; Soh, G.S. A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4030–4036. [Google Scholar] [CrossRef]
- Nair, A.; Ramji, V.; Durai Raj, R.; Veeramani, R. Laser cladding of Stellite 6 on EN8 steel—A fuzzy modelling approach. Mater. Today Proc. 2021, 39, 348–353. [Google Scholar] [CrossRef]
- Liang, W.; Yang, Y.; Qi, K.; Jin, K.; Xiong, L. Quality evaluation of multi-path laser cladding coatings based on integrated fuzzy comprehensive evaluation and improved analytical hierarchy process method. Surf. Coat. Technol. 2021, 427, 127816. [Google Scholar] [CrossRef]
- Velázquez, D.R.T.; Helleno, A.L.; Fals, H.C.; dos Santos, R.G. Prediction of geometrical characteristics and process parameter optimization of laser deposition AISI 316 steel using fuzzy inference. Int. J. Adv. Manuf. Technol. 2021, 115, 1547–1564. [Google Scholar] [CrossRef]
- Nalajam, P.K.; V, R. Microstructural porosity segmentation using machine learning techniques in wire-based direct energy deposition of AA6061. Micron 2021, 151, 103161. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, A.I.; Alvarado-Orozco, J.M.; Ibarra-Medina, J.; Martínez-Franco, E. Ex-situ porosity classification in metallic components by laser metal deposition: A machine learning-based approach. J. Manuf. Process. 2021, 62, 523–534. [Google Scholar] [CrossRef]
- Kulkarni, A.; Bhatt, P.M.; Kanyuck, A.; Gupta, S.K. Using Unsupervised Learning for Regulating Deposition Speed During Robotic Wire Arc Additive Manufacturing. In Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2021. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Zhao, Z.; Deng, W.; Han, J.; Bai, L.; Yang, X.; Yao, J. Active disturbance rejection control of layer width in wire arc additive manufacturing based on deep learning. J. Manuf. Process. 2021, 67, 364–375. [Google Scholar] [CrossRef]
- Mohajernia, B.; Mirazimzadeh, S.E.; Pasha, A.; Urbanic, R.J. Machine learning approaches for predicting geometric and mechanical characteristics for single P420 laser beads clad onto an AISI 1018 substrate. Int. J. Adv. Manuf. Technol. 2022, 118, 3691–3710. [Google Scholar] [CrossRef]
- Barrionuevo, G.O.; Ríos, S.; Williams, S.W.; Ramos-Grez, J.A. Comparative Evaluation of Machine Learning Regressors for the Layer Geometry Prediction in Wire arc Additive manufacturing. In Proceedings of the 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 13–15 May 2021; pp. 186–190. [Google Scholar] [CrossRef]
- Xia, C.; Pan, Z.; Polden, J.; Li, H.; Xu, Y.; Chen, S. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. J. Intell. Manuf. 2022, 33, 1467–1482. [Google Scholar] [CrossRef]
- Ding, D.; He, F.; Yuan, L.; Pan, Z.; Wang, L.; Ros, M. The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration. J. Ind. Inf. Integr. 2021, 23, 100218. [Google Scholar] [CrossRef]
- Surovi, N.A.; Dharmawan, A.G.; Soh, G.S. (Eds.) A Study on the Acoustic Signal Based Frameworks for the Real-Time Identification of Geometrically Defective Wire Arc Bead. In Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2021. [Google Scholar] [CrossRef]
- Pham, T.Q.D.; Tran, X.V.; Habraken, A.M. Effects of uncertainty in laser energy on temperature evolutions in directed energy deposition process using machine learning-based stochastic approach. In Proceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), Soyapango, El Salvador, 16–17 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Wu, D. Prediction of melt pool temperature in directed energy deposition using machine learning. Addit. Manuf. 2021, 37, 101692. [Google Scholar] [CrossRef]
- Asadi, M.; Fernandez, M.; Kashani, M.T.; Smith, M. Machine-Learning Digital Twin of Overlay Metal Deposition for Distortion Control of Panel Structures. IFAC-PapersOnLine 2021, 54, 767–772. [Google Scholar] [CrossRef]
- Reimann, J.; Hammer, S.; Henckell, P.; Rohe, M.; Ali, Y.; Rauch, A.; Hildebrand, J.; Bergmann, J.P. Directed Energy Deposition-Arc (DED-Arc) and Numerical Welding Simulation as a Hybrid Data Source for Future Machine Learning Applications. Appl. Sci. 2021, 11, 7075. [Google Scholar] [CrossRef]
- Lee, C.H.; Narayana, P.L.; Choi, S.W.; Reddy, N.S.; Kim, J.H.; Kang, N.; Hong, J.K. Influence of Direct Energy Deposition Parameters on Ti-6Al-4V Component’s Structure-Property Homogeneity. Metals 2021, 11, 887. [Google Scholar] [CrossRef]
- Farias, F.W.C.; da Cruz Payão Filho, J.; Moraes e Oliveira, V.H.P. Prediction of the interpass temperature of a wire arc additive manufactured wall: FEM simulations and artificial neural network. Addit. Manuf. 2021, 48, 102387. [Google Scholar] [CrossRef]
- Wacker, C.; Köhler, M.; David, M.; Aschersleben, F.; Gabriel, F.; Hensel, J.; Dilger, K.; Dröder, K. Geometry and Distortion Prediction of Multiple Layers for Wire Arc Additive Manufacturing with Artificial Neural Networks. Appl. Sci. 2021, 11, 4694. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Y.; Kong, F.; Li, R.; Xiao, Y.; Hu, J.; Zhang, H. An in-process multi-feature data fusion nondestructive testing approach for wire arc additive manufacturing. Rapid Prototyp. J. 2022, 28, 573–584. [Google Scholar] [CrossRef]
- Li, K.; Li, T.; Ma, M.; Wang, D.; Deng, W.; Lu, H. Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network. Opt. Laser Technol. 2021, 142, 107161. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Fu, H.; Zhi, X.; Guo, X.; Lin, J. Prediction for Dilution Rate of AlCoCrFeNi Coatings by Laser Cladding Based on a BP Neural Network. Coatings 2021, 11, 1402. [Google Scholar] [CrossRef]
- Wang, D.S.; Zheng, X.Y.; Wang, J.W.; Zhou, X.H. Dilution Optimization of Laser Cladding Assisted by Pulsed Current Based on Genetic Algorithm and Neural Network. Key Eng. Mater. 2021, 904, 485–497. [Google Scholar] [CrossRef]
- Su, P.; Li, H.; Yang, J.; Huang, D. Optimal design of structure parameters of coaxial powder feeding nozzle for laser cladding. J. Phys. Conf. Ser. 2021, 1798, 012050. [Google Scholar] [CrossRef]
- Hajializadeh, F.; Ince, A. A high-performance modeling approach of artificial neural network and finite element analysis for residual stress prediction of direct metal deposition process. In Proceedings of the Canadian Society for Mechanical Engineering International Congress, Charlottetown, PE, Canada, 27–30 June 2021. [Google Scholar]
- Hajializadeh, F.; Ince, A. Integration of artificial neural network with finite element analysis for residual stress prediction of direct metal deposition process. Mater. Today Commun. 2021, 27, 102197. [Google Scholar] [CrossRef]
- Jeon, I.; Yang, L.; Ryu, K.; Sohn, H. Online melt pool depth estimation during directed energy deposition using coaxial infrared camera, laser line scanner, and artificial neural network. Addit. Manuf. 2021, 47, 102295. [Google Scholar] [CrossRef]
- Feenstra, D.R.; Molotnikov, A.; Birbilis, N. Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications. Mater. Des. 2021, 198, 109342. [Google Scholar] [CrossRef]
- Mi, J.; Zhang, Y.; Li, H.; Shen, S.; Yang, Y.; Song, C.; Zhou, X.; Duan, Y.; Lu, J.; Mai, H. In-situ monitoring laser based directed energy deposition process with deep convolutional neural network. J. Intell. Manuf. 2023, 34, 683–693. [Google Scholar] [CrossRef]
- Darabi, R.; Ferreira, A.; Azinpour, E.; de Sa, J.C.; Reis, A. Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. Int. J. Adv. Manuf. Technol. 2022, 119, 3975–3993. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, M.; Lu, Y.; Du, W. Deposition geometrical characteristics of wire arc additive-manufactured AA2219 aluminium alloy with cold metal transfer pulse advance arc mode. Int. J. Adv. Manuf. Technol. 2022, 123, 3807–3818. [Google Scholar] [CrossRef]
- Yao, F.; Fang, L.; Chen, X. Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel. Processes 2021, 9, 408. [Google Scholar] [CrossRef]
- Xiawei, L.E.; Jingbin, H.A.O.; Qingdong, M.E.N.G.; Fangtao, H.U.; Hao, L.I.U.; Haifeng, Y.A.N.G.; Xinhua, L.I.U. Prediction of 18Ni300 laser cladding topography based on back-propagation neural network and particle swarm optimization. J. Phys. Conf. Ser. 2021, 1775, 012009. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, J.; Peng, S.; Wang, F.; Weiwei, L. In-suit monitoring melt pool states in direct energy deposition using ResNet. Meas. Sci. Technol. 2022, 33, 124007. [Google Scholar] [CrossRef]
- Haghshenas, A.; Bohlen, A.; Tyralla, D.; Groll, R. The relevance of wall roughness modeling for simulation of powder flows in laser metal deposition nozzles. Int. J. Adv. Manuf. Technol. 2022, 123, 1441–1458. [Google Scholar] [CrossRef]
- Hebert, D.; Thien, A.; Saldana, C. Acoustic Process Monitoring of Contact Tip to Work Piece Distance in Wire Arc Additive Manufacturing by Random Forest Algorithms. In Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference, West Lafayette, IN, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; Zhao, L.; Lv, G.; Duan, M. Data-driven Decision-making Approach of Laser Cladding Parameters for Low Carbon. J. Phys. Conf. Ser. 2022, 2402, 012002. [Google Scholar] [CrossRef]
- Trivedi, P.; Vansjalia, R.; Erra, S.; Narayanan, S.; Nagaraju, D. A Fuzzy CRITIC and Fuzzy WASPAS-Based Integrated Approach for Wire Arc Additive Manufacturing (WAAM) Technique Selection. Arab. J. Sci. Eng. 2023, 48, 3269–3288. [Google Scholar] [CrossRef]
- Chigilipalli, B.K.; Veeramani, A. An experimental investigation and neuro-fuzzy modeling to ascertain metal deposition parameters for the wire arc additive manufacturing of Incoloy 825. CIRP J. Manuf. Sci. Technol. 2022, 38, 386–400. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, S.S. An Adaptive Neuro-fuzzy-Based Methodology for Prediction of Surface Roughness in Wire Arc Additive Manufacturing. In Recent Trends in Product Design and Intelligent Manufacturing Systems; Deepak, B., Bahubalendruni, M.R., Parhi, D., Biswal, B.B., Eds.; Springer: Singapore, 2023; pp. 739–747. [Google Scholar]
- Anicic, O.; Troha, S.; Milovancevic, M.; Denic, N.; Vujovic, V. Neuro fuzzy determination of optimal parameters of laser directed energy deposition for formation of cladding structures. Adv. Eng. Softw. 2022, 172, 103223. [Google Scholar] [CrossRef]
- Naveen Srinivas, M.; Vimal, K.E.K.; Manikandan, N.; Sritharanandh, G. Parametric optimization and multiple regression modelling for fabrication of aluminium alloy thin plate using wire arc additive manufacturing. Int. J. Interact. Des. Manuf. (IJIDeM) 2022. [Google Scholar] [CrossRef]
- Ilanlou, M.; Shoja Razavi, R.; Nourollahi, A.; Hosseini, S.; Haghighat, S. Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Opt. Laser Technol. 2022, 156, 108507. [Google Scholar] [CrossRef]
- Hu, B.; Han, J.; Wang, J. Parameter Study and Economic Efficiency Optimization for Laser Cladding with Wide-Band Fiber Laser. Int. J. Opt. 2022, 2022, 6373772. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, B.; Tang, Z.; Cao, W. Application of a Bio-Inspired Algorithm in the Process Parameter Optimization of Laser Cladding. Machines 2022, 10, 263. [Google Scholar] [CrossRef]
- Yang, S.; Bai, H.; Li, C.; Shu, L.; Zhang, X.; Jia, Z. Numerical Simulation and Multi-Objective Parameter Optimization of Inconel718 Coating Laser Cladding. Coatings 2022, 12, 708. [Google Scholar] [CrossRef]
- Cao, Q.; Lian, G.; Chen, C.; Feng, M. Sensitivity analysis of the process parameters of laser cladding NiCrCoAlY. Metall. Res. Technol. 2022, 119, 206. [Google Scholar] [CrossRef]
- D’Accardi.; Chiappini, F.; Giannasi, A.; Guerrini, M.; Maggiani, G.; Palumbo, D.; Galietti, U. Monitoring the Laser Metal Deposition (LMD) process by means of thermal methods. In Proceedings of the 16th Quantitative InfraRed Thermography Conference, Paris, France, 4–8 July 2022. [Google Scholar]
- Zapata, A.; Bernauer, C.; Stadter, C.; Kolb, C.G.; Zaeh, M.F. Investigation on the Cause-Effect Relationships between the Process Parameters and the Resulting Geometric Properties for Wire-Based Coaxial Laser Metal Deposition. Metals 2022, 12, 455. [Google Scholar] [CrossRef]
- Biyikli, M.; Karagoz, T.; Calli, M.; Muslim, T.; Ozalp, A.A.; Bayram, A. Single Track Geometry Prediction of Laser Metal Deposited 316L-Si Via Multi-Physics Modelling and Regression Analysis with Experimental Validation. Met. Mater. Int. 2023, 29, 807–820. [Google Scholar] [CrossRef]
- Dang, L.; He, X.; Tang, D.; Li, Y.; Wang, T. A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures. Int. J. Fatigue 2022, 159, 106748. [Google Scholar] [CrossRef]
- Xiao, X.; Waddell, C.; Hamilton, C.; Xiao, H. Quality Prediction and Control in Wire Arc Additive Manufacturing via Novel Machine Learning Framework. Micromachines 2022, 13, 137. [Google Scholar] [CrossRef]
- Hespeler, S.; Dehghan-Niri, E.; Juhasz, M.; Luo, K.; Halliday, H.S. Deep Learning for In-Situ Layer Quality Monitoring during Laser-Based Directed Energy Deposition (LB-DED) Additive Manufacturing Process. Appl. Sci. 2022, 12, 8974. [Google Scholar] [CrossRef]
- Gil, J.; de Jesus, A.; Silva, M.B.; Vaz, M.F.; Reis, A.; Tavares, J.M.R.S. Automation of Property Acquisition of Single Track Depositions Manufactured through Direct Energy Deposition. Appl. Sci. 2022, 12, 2755. [Google Scholar] [CrossRef]
- Surovi, N.A.; Hussain, S.; Soh, G.S. A Study of Machine Learning Framework for Enabling Early Defect Detection in Wire Arc Additive Manufacturing Processes. In Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, St. Louis, MO, USA, 14–17 August 2022. [Google Scholar] [CrossRef]
- Cheepu, M. Machine Learning Approach for the Prediction of Defect Characteristics in Wire Arc Additive Manufacturing. Trans. Indian Inst. Met. 2023, 76, 447–455. [Google Scholar] [CrossRef]
- Li, Y.; Polden, J.; Pan, Z.; Cui, J.; Xia, C.; He, F.; Mu, H.; Li, H.; Wang, L. A defect detection system for wire arc additive manufacturing using incremental learning. J. Ind. Inf. Integr. 2022, 27, 100291. [Google Scholar] [CrossRef]
- Mu, H.; Chen, Z.; He, F.; Li, Y.; Xia, C.; Commins, P.; Pan, Z. Defect Detection and Process Monitoring for Wire Arc Additive Manufacturing Using Machine Learning. In Transactions on Intelligent Welding Manufacturing; Chen, S., Zhang, Y., Feng, Z., Eds.; Springer: Singapore, 2022; pp. 3–22. [Google Scholar]
- Oh, W.J.; Lee, C.M.; Kim, D.H. Prediction of deposition bead geometry in wire arc additive manufacturing using machine learning. J. Mater. Res. Technol. 2022, 20, 4283–4296. [Google Scholar] [CrossRef]
- Barrionuevo, G.O.; Sequeira-Almeida, P.M.; Ríos, S.; Ramos-Grez, J.A.; Williams, S.W. A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 3123–3133. [Google Scholar] [CrossRef]
- Chen, H.; Yaseer, A.; Zhang, Y. Top Surface Roughness Modeling for Robotic Wire Arc Additive Manufacturing. J. Manuf. Mater. Process. 2022, 6, 39. [Google Scholar] [CrossRef]
- Knüttel, D.; Baraldo, S.; Valente, A.; Bleicher, F.; Wegener, K.; Carpanzano, E. Machine learning based track height prediction for complex tool paths in direct metal deposition. CIRP Ann. 2022, 71, 193–196. [Google Scholar] [CrossRef]
- Kunchala, B.K.R.; Gamini, S.; Anilkumar, T.C. Inclusion of IoT technology in additive manufacturing: Machine learning-based adaptive bead modeling and path planning for sustainable wire arc additive manufacturing and process optimization. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 237, 120–132. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Miao, J.; Liu, H.; Babkin, A.; Chang, Y. Forming accuracy improvement in wire arc additive manufacturing (WAAM): A review. Rapid Prototyp. J. 2023, 29, 673–686. [Google Scholar] [CrossRef]
- Ye, J.; Bab-Hadiashar, A.; Hoseinnezhad, R.; Alam, N.; Vargas-Uscategui, A.; Patel, M.; Cole, I. Predictions of in-situ melt pool geometric signatures via machine learning techniques for laser metal deposition. Int. J. Comput. Integr. Manuf. 2023, 36, 1345–1361. [Google Scholar] [CrossRef]
- Le, V.T.; Bui, M.C.; Pham, T.Q.D.; Tran, H.S.; Tran, X.V. Efficient prediction of thermal history in wire and arc-directed energy deposition combining machine learning and numerical simulation. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, G.; Li, Y.; Tang, Z.; Nie, Z. The Design of Reflected Laser Intensity Testing System and Application of Quality Inspection for Laser Cladding Process. Machines 2022, 10, 821. [Google Scholar] [CrossRef]
- Al-Sayed, S.R.; Samad, F.A.; Mohamed, T.; Youssef, D. Novel Surface Topography and Microhardness Characterization of Laser Clad Layer on TC4 Titanium Alloy Using Laser-Induced Breakdown Spectroscopy and Machine Learning. Metall. Mater. Trans. A 2022, 53, 3639–3653. [Google Scholar] [CrossRef]
- Loreau, T.; Champaney, V.; Hascoet, N.; Lambarri, J.; Madarieta, M.; Garmendia, I.; Chinesta, F. Parametric analysis and machine learning-based parametric modeling of wire laser metal deposition induced porosity. Int. J. Mater. Form. 2022, 15, 33. [Google Scholar] [CrossRef]
- Kats, D.; Wang, Z.; Gan, Z.; Liu, W.K.; Wagner, G.J.; Lian, Y. A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Comput. Mater. Sci. 2022, 202, 110958. [Google Scholar] [CrossRef]
- Bappy, M.M.; Liu, C.; Bian, L.; Tian, W. Morphological Dynamics-Based Anomaly Detection Towards In Situ Layer-Wise Certification for Directed Energy Deposition Processes. J. Manuf. Sci. Eng 2022, 144, 111007. [Google Scholar] [CrossRef]
- Chadha, U.; Selvaraj, S.K.; Lamsal, A.S.; Maddini, Y.; Ravinuthala, A.K.; Choudhary, B.; Mishra, A.; Padala, D.; M, S.; Lahoti, V.; et al. Directed Energy Deposition via Artificial Intelligence-Enabled Approaches. Complexity 2022, 2022, 2767371. [Google Scholar] [CrossRef]
- Bose, S.; Biswas, A.; Tiwari, Y.; Mukherjee, M.; Shekhar Roy, S. Artificial neural Network-Based approaches for Bi-directional modelling of robotic wire arc additive manufacturing. Mater. Today Proc. 2022, 62, 6507–6513. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Sun, Y.; Cheng, W. Surface quality optimization of laser cladding based on surface response and genetic neural network model. Surf. Topogr. Metrol. Prop. 2022, 10, 044007. [Google Scholar] [CrossRef]
- Tyagi, R.; Kumar, S.; Raza, M.S.; Tripathi, A.; Das, A.K. Experimental study of laser cladding process and prediction of process parameters by artificial neural network (ANN). J. Cent. South Univ. 2022, 29, 3489–3502. [Google Scholar] [CrossRef]
- Knüttel, D.; Baraldo, S.; Valente, A.; Wegener, K.; Carpanzano, E. Transfer learning of neural network based process models in Direct Metal Deposition. Procedia CIRP 2022, 107, 863–868. [Google Scholar] [CrossRef]
- Dhar, A.R.; Gupta, D.; Roy, S.S.; Lohar, A.K. Forward and backward modeling of direct metal deposition using metaheuristic algorithms tuned artificial neural network and extreme gradient boost. Prog. Addit. Manuf. 2022, 7, 627–641. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Hao, Y.; Liang, X.; Zhao, K. Prediction of TC11 single-track geometry in laser metal deposition based on back propagation neural network and random forest. J. Mech. Sci. Technol. 2022, 36, 1417–1425. [Google Scholar] [CrossRef]
- Knüttel, D.; Baraldo, S.; Valente, A.; Carpanzano, E.; Wegener, K. Height prediction in Directed Metal Deposition with Artificial Neural Networks. Procedia CIRP 2022, 113, 312–317. [Google Scholar] [CrossRef]
- Marko, A.; Bähring, S.; Raute, J.; Biegler, M.; Rethmeier, M. Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals. Appl. Sci. 2022, 12, 3955. [Google Scholar] [CrossRef]
- Li, C.; Jia, T.; Han, X.; Jiang, X. Study on parameter optimization of laser cladding Fe60 based on GA-BP neural network. J. Adhes. Sci. Technol. 2023, 37, 2556–2586. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhou, Y.; Xu, L.; Zhou, X. Optimization of laser cladding process parameters based on genetic algorithm and neural networks. In Proceedings of the International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2022), Shijiazhuang, China, 27–29 May 2022; Volume 12309, p. 1230906. [Google Scholar] [CrossRef]
- Marko, A.; Bähring, S.; Raute, J.; Biegler, M.; Rethmeier, M. Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition. Mater. Test. 2022, 64, 1586–1596. [Google Scholar] [CrossRef]
- Xie, J.; Chai, Z.; Xu, L.; Ren, X.; Liu, S.; Chen, X. 3D temperature field prediction in direct energy deposition of metals using physics informed neural network. Int. J. Adv. Manuf. Technol. 2022, 119, 3449–3468. [Google Scholar] [CrossRef]
- McGowan, E.; Gawade, V.; Guo, W. A Physics-Informed Convolutional Neural Network with Custom Loss Functions for Porosity Prediction in Laser Metal Deposition. Sensors 2022, 22, 494. [Google Scholar] [CrossRef]
- Cho, H.W.; Shin, S.J.; Seo, G.J.; Kim, D.B.; Lee, D.H. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. J. Mater. Process. Technol. 2022, 302, 117495. [Google Scholar] [CrossRef]
- Cui, L.J.; Li, H.Y.; Guo, S.R.; Cui, Y.H.; Li, X.L.; Sun, M.Y.; Cheng, G. Research on recognition method of laser cladding dilution rate and contour quality based on Semantic Segmentation Visual Geometry Group network. J. Laser Appl. 2022, 34, 022008. [Google Scholar] [CrossRef]
- Zhu, S.; Xia, W.; Kamali, H.; Ouyang, L.; Xie, L.; Huang, Z.; Jiang, Z. Deep learning-driven precision control of dilution rate in multi-pass laser cladding: Experiment and simulation. Int. J. Adv. Manuf. Technol. 2023, 127, 5353–5371. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Hao, Y.; Wang, X.; Zhao, K.; Ding, X. Prediction of molten pool temperature and processing quality in laser metal deposition based on back propagation neural network algorithm. Opt. Laser Technol. 2022, 155, 108363. [Google Scholar] [CrossRef]
- Jeon, I.; Liu, P.; Sohn, H. Real-time melt pool depth estimation and control during metal-directed energy deposition for porosity reduction. Int. J. Adv. Manuf. Technol. 2023. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Moon, S.K. In-situ acoustic monitoring of direct energy deposition process with deep learning-assisted signal denoising. Mater. Today Proc. 2022, 70, 136–142. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Tan, C.; He, W.; Su, J.; Weng, F.; Chew, Y.; Ng, N.P.H.; Moon, S.K. In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning. Addit. Manuf. 2023, 69, 103547. [Google Scholar] [CrossRef]
- Lee, H.; Heogh, W.; Yang, J.; Yoon, J.; Park, J.; Ji, S.; Lee, H. Deep learning for in-situ powder stream fault detection in directed energy deposition process. J. Manuf. Syst. 2022, 62, 575–587. [Google Scholar] [CrossRef]
- Pham, T.Q.D.; Hoang, T.V.; Tran, X.V.; Fetni, S.; Duchêne, L.; Tran, H.S.; Habraken, A.M. Uncertainty Quantification in the Directed Energy Deposition Process Using Deep Learning-Based Probabilistic Approach. Key Eng. Mater. 2022, 926, 323–330. [Google Scholar] [CrossRef]
- Pham, T.Q.D.; Hoang, T.V.; Tran, X.V.; Fetni, S.; Duchêne, L.; Tran, H.S.; Habraken, A.M. Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition process using a deep learning-based surrogate model. Probab. Eng. Mech. 2022, 69, 103297. [Google Scholar] [CrossRef]
- Guo, S.; Wang, K.; Cui, L.; Li, X.; Zheng, B.; Chen, Y. Morphology identification of dendrites of laser cladding layer based on deep learning. J. Appl. Opt. 2022, 43, 532–537. [Google Scholar] [CrossRef]
- Du, Y.; He, G.; Zhou, Z.; Xu, L.; Huang, M. Multi-objective optimization of process parameters of laser cladding 15-5PH alloy powder based on gray-fuzzy taguchi approach. Eng. Res. Express 2023, 5, 025015. [Google Scholar] [CrossRef]
- Xv, Y.; Sun, Y.; Cheng, W.; Zhang, Y. Engineering Process Optimization and Quality Stability Control of High-Speed Laser Cladding Coatings Based on AHP-FCE. Coatings 2023, 13, 1806. [Google Scholar] [CrossRef]
- Tendere, T.L.; Sacks, N. Regression analysis and optimization of direct energy deposition parameters for functionally graded 316L stainless steel-tungsten carbide coatings. MATEC Web Conf. 2023, 388, 03003. [Google Scholar] [CrossRef]
- Lyu, J.; Akhavan, J.; Mahmoud, Y.; Xu, K.; Vallabh, C.K.P.; Manoochehri, S. Real-Time Monitoring and Gaussian Process-Based Estimation of the Melt Pool Profile in Direct Energy Deposition. In Proceedings of the ASME 2023 18th International Manufacturing Science and Engineering Conference, New Brunswick, NJ, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Barik, S.; Bhandari, R.; Mondal, M.K. Optimization of Wire Arc Additive Manufacturing Process Parameters for Low-Carbon Steel and Properties Prediction by Support Vector Regression Model. Steel Res. Int. 2024, 95, 2300369. [Google Scholar] [CrossRef]
- Houdková, Š.; Šulcová, P.; Lencová, K.; Česánek, Z.; Švantner, M. Twin Wire Arc Sprayed Coatings for Power Industry Applications-process parameters optimization study. J. Phys. Conf. Ser. 2023, 2572, 012001. [Google Scholar] [CrossRef]
- Borhani, M.R.; Rajabi, M.; Shojarazavi, R.; Jamaati, R. Statistical modeling in the laser cladding process of Inconel 625 via linear regression and response surface method. J. Laser Appl. 2023, 35, 022024. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Hong, Y.; Sohan, H.M.S.; Tong, Y.; Hu, Y.; Zhang, M.; Zhang, J.; Xiang, D.; Fu, H.; et al. An Overview of Technological Parameter Optimization in the Case of Laser Cladding. Coatings 2023, 13, 496. [Google Scholar] [CrossRef]
- Yan, R.; Liu, Z. Numerical Simulation and Experimental Prediction of the Cladding Layer Based on the Response Surface Method. Coatings 2023, 13, 845. [Google Scholar] [CrossRef]
- Paulus, P.; Ruppert, Y.; Vielhaber, M.; Griebsch, J. Process Map Definition for Laser Metal Deposition of VDM Alloy 780 on the 316L Substrate. J. Manuf. Mater. Process. 2023, 7, 86. [Google Scholar] [CrossRef]
- D’Accardi, E.; Chiappini, F.; Giannasi, A.; Guerrini, M.; Maggiani, G.; Palumbo, D.; Galietti, U. Online monitoring of direct laser metal deposition process by means of infrared thermography. Prog. Addit. Manuf. 2024, 9, 983–1001. [Google Scholar] [CrossRef]
- Mattera, G.; Nele, L.; Paolella, D. Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: A review. J. Intell. Manuf. 2024, 35, 467–497. [Google Scholar] [CrossRef]
- He, F.; Yuan, L.; Mu, H.; Ros, M.; Ding, D.; Pan, Z.; Li, H. Research and application of artificial intelligence techniques for wire arc additive manufacturing: A state-of-the-art review. Robot. Comput.-Integr. Manuf. 2023, 82, 102525. [Google Scholar] [CrossRef]
- Wasmer, K.; Wüst, M.; Cui, D.; Masinelli, G.; Pandiyan, V.; Shevchik, S. Monitoring of functionally graded material during laser directed energy deposition by acoustic emission and optical emission spectroscopy using artificial intelligence. Virtual Phys. Prototyp. 2023, 18, e2189599. [Google Scholar] [CrossRef]
- Mirazimzadeh, S.E.; Pazireh, S.; Urbanic, J.; Jianu, O. Unsupervised clustering approach for recognizing residual stress and distortion patterns for different parts for directed energy deposition additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 125, 5067–5087. [Google Scholar] [CrossRef]
- Mamedipaka, R.; Thapliyal, S. Data-Driven Model for Predicting Tensile Properties of Wire Arc Additive Manufactured 316L Steels and Its Validation. J. Mater. Eng. Perform. 2024, 33, 1083–1091. [Google Scholar] [CrossRef]
- Gomez-Omella, M.; Flores, J.; Sierra, B.; Ferreiro, S.; Hascoët, N.; Chinesta, F. Optimizing porosity detection in wire laser metal deposition processes through data-driven AI classification techniques. Eng. Fail. Anal. 2023, 152, 107464. [Google Scholar] [CrossRef]
- Perumal, V.; Abueidda, D.; Koric, S.; Kontsos, A. Temporal convolutional networks for data-driven thermal modeling of directed energy deposition. J. Manuf. Process. 2023, 85, 405–416. [Google Scholar] [CrossRef]
- Safdar, M.; Xie, J.; Ko, H.; Lu, Y.; Lamouche, G.; Zhao, Y.F. Transferability Analysis of Data-Driven Additive Manufacturing Knowledge: A Case Study Between Powder Bed Fusion and Directed Energy Deposition. J. Comput. Inf. Sci. Eng 2024, 24, 051010. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, C.; Cheng, J.; Chen, Z.; Wang, L.; Wang, K. Research of surface oxidation defects in copper alloy wire arc additive manufacturing based on time-frequency analysis and deep learning method. J. Mater. Res. Technol. 2023, 25, 511–521. [Google Scholar] [CrossRef]
- Sharma, N.; Nagappan, B.; Shahid, M.; Patel, D.; Sutariya, K.; Reddy, V.R. Optimizing Melt Pool Temperature Prediction Using Convolutional Bilstm with Insights from Dragonfly Behavior in Wire-Arc Additive Manufacturing. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Vincent, A.; Natarajan, H. Machine Learning Approach to Predict Bead Height and Width in Wire Arc Additive Manufacturing Sample. In Proceedings of the International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility, Kattankulathur, India, 27–28 October 2023. [Google Scholar] [CrossRef]
- Brooke, R.; Qiu, D.; Le, T.; Gibson, M.; Zhang, D.; Easton, M. Beyond global energy density for direct energy deposition: Machine learning for modelling and optimizing process parameters. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Krishnaveni, S.; Kunchala, B.R.; Gamini, S.; Ch Anilkumar, T. Machine learning-based bead modeling of wire arc additive manufacturing (WAAM) using an industrial robot. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Sharma, R.; Raj Paul, A.; Mukherjee, M.; Ram Krishna Vadali, S.; Kumar Singh, R.; Kumar Sharma, A. Forecasting of process parameters using machine learning techniques for wire arc additive manufacturing process. Mater. Today Proc. 2023, 80, 248–253. [Google Scholar] [CrossRef]
- Hao, J.; Yang, S.; Le, X.; Królczyk, G.; Sulowicz, M.; Glowacz, A.; Li, Z. Bead morphology prediction of coaxial laser cladding on inclined substrate using machine learning. J. Manuf. Process. 2023, 98, 159–172. [Google Scholar] [CrossRef]
- Hermann, F.; Michalowski, A.; Brünnette, T.; Reimann, P.; Vogt, S.; Graf, T. Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition. Materials 2023, 16, 7308. [Google Scholar] [CrossRef] [PubMed]
- Asadi, R.; Queguineur, A.; Ylä-Autio, A.; Martikkala, A.; Wiikinkoski, O.; Mokhtarian, H.; Flores Ituarte, I. Using artificial neural networks to model single bead geometries processed by laser-wire direct energy deposition. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1296, 012005. [Google Scholar] [CrossRef]
- Zheng, K.; Yao, C.; Mou, G.; Xiang, H. Prediction of Weld Bead Formation of Duplex Stainless Steel Fabricated by Wire Arc Additive Manufacturing Based on the PSO-BP Neural Network. J. Mar. Sci. Appl. 2023, 22, 311–323. [Google Scholar] [CrossRef]
- Mu, H.; He, F.; Lei, Y.; Commins, P.; Pan, Z. A Machine Learning Approach for Real-Time Measuring the Bead Geometry in Wire Arc Additive Manufacturing Using Welding Electric Signals. SSRN, 2023; preprint. [Google Scholar]
- Chigilipalli, B.K.; Veeramani, A. A machine learning approach for the prediction of tensile deformation behavior in wire arc additive manufacturing. Int. J. Interact. Des. Manuf. (IJIDeM) 2025, 19, 185–197. [Google Scholar] [CrossRef]
- Cooper, C.; Zhang, J.; Huang, J.; Bennett, J.; Cao, J.; Gao, R.X. Tensile strength prediction in directed energy deposition through physics-informed machine learning and Shapley additive explanations. J. Mater. Process. Technol. 2023, 315, 117908. [Google Scholar] [CrossRef]
- Shin, S.J.; Hong, S.H.; Jadhav, S.; Kim, D.B. Detecting balling defects using multisource transfer learning in wire arc additive manufacturing. J. Comput. Des. Eng. 2023, 10, 1423–1442. [Google Scholar] [CrossRef]
- Bonin, C.; Simas, H.; Pereira, M.; Dal Mago, A.L.; Chagas, P.S. Leveraging machine learning for predicting and monitoring clogging in laser cladding processes: An exploration of neural sensors. J. Laser Appl. 2023, 35, 042022. [Google Scholar] [CrossRef]
- Paulus, P.; Ruppert, Y.; Vielhaber, M.; Griebsch, J. Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches. J. Laser Appl. 2023, 35, 042034. [Google Scholar] [CrossRef]
- Lee, J.A.; Sagong, M.J.; Jung, J.; Kim, E.S.; Kim, H.S. Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing. J. Mater. Res. Technol. 2023, 22, 413–423. [Google Scholar] [CrossRef]
- Ribeiro, K.S.B.; Núñez, H.H.L.; Venter, G.S.; Doude, H.R.; Coelho, R.T. A hybrid machine learning model for in-process estimation of printing distance in laser Directed Energy Deposition. Int. J. Adv. Manuf. Technol. 2023, 127, 3183–3194. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, X.; Hohl, J.; Liao, Y.; Mushongera, L.T. Life Prediction for Directed Energy Deposition-Manufactured 316L Stainless Steel using a Coupled Crystal Plasticity-Machine Learning Framework. Adv. Eng. Mater. 2023, 25, 2201429. [Google Scholar] [CrossRef]
- Krishna, K.V.M.; Madhavan, R.; Pantawane, M.V.; Banerjee, R.; Dahotre, N.B. Machine learning based de-noising of electron back scatter patterns of various crystallographic metallic materials fabricated using laser directed energy deposition. Ultramicroscopy 2023, 247, 113703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huang, K.; Zhao, K.; Tan, H.; Li, Y.; Qiu, Y.; Chen, Y.; Wang, M.; Zhang, L.C. Directed energy deposition combining high-throughput technology and machine learning to investigate the composition-microstructure-mechanical property relationships in titanium alloys. J. Mater. Process. Technol. 2023, 311, 117800. [Google Scholar] [CrossRef]
- Kumar, A.; Sarma, R.; Bag, S.; Srivastava, V.C.; Kapil, S. Physics-informed machine learning models for the prediction of transient temperature distribution of ferritic steel in directed energy deposition by cold metal transfer. Sci. Technol. Weld. Join. 2023, 28, 914–922. [Google Scholar] [CrossRef]
- Fullington, D.; Bian, L.; Tian, W. Design De-Identification of Thermal History for Collaborative Process-Defect Modeling of Directed Energy Deposition Processes. J. Manuf. Sci. Eng. 2023, 145, 051004. [Google Scholar] [CrossRef]
- Huang, Y.; Yue, C.; Tan, X.; Zhou, Z.; Li, X.; Zhang, X.; Zhou, C.; Peng, Y.; Wang, K. Quality Prediction for Wire Arc Additive Manufacturing Based on Multi-source Signals, Whale Optimization Algorithm-Variational Modal Decomposition, and One-Dimensional Convolutional Neural Network. J. Mater. Eng. Perform. 2024, 33, 11351–11364. [Google Scholar] [CrossRef]
- Polyzos, E.; Pulju, H.; Mäckel, P.; Hinderdael, M.; Ertveldt, J.; Van Hemelrijck, D.; Pyl, L. Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Deposition. Materials 2023, 16, 1444. [Google Scholar] [CrossRef]
- Duan, C.; Cao, X.; Luo, X.; Shang, D.; Hao, X. Multi-Physics Investigations on the Gas-Powder Flow and the Molten Pool Dynamics During Directed Energy Deposition Process. J. Manuf. Sci. Eng 2023, 145, 081008. [Google Scholar] [CrossRef]
- Hamrani, A.; Agarwal, A.; Allouhi, A.; McDaniel, D. Applying machine learning to wire arc additive manufacturing: A systematic data-driven literature review. J. Intell. Manuf. 2024, 35, 2407–2439. [Google Scholar] [CrossRef]
- Solovyov, V.G.; Lankin, Y.M.; Romanova, I.Y. Application of neural networks for monitoring and control of the modes of flux-cored wire arc surfacing. Autom. Weld. 2023, 10, 30–36. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Y.; Guo, S.; Chen, Y.; Cui, Y.; Li, X. Prediction of Laser Cladding Layer Cross-Sectional Morphology - Based on SSA-BP Neural Network. Opt. Open, 2023; preprint. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Wang, C.; Hao, Y.; Liang, X.; Li, W.; Zhao, K. Multi-objective optimization of process parameters for laser metal deposition of NiTi shape memory alloy based on neural network and genetic algorithm. Int. J. Adv. Manuf. Technol. 2024, 130, 4663–4678. [Google Scholar] [CrossRef]
- Dong, F.; Kong, L.; Wang, H.; Chen, Y.; Liang, X. Laser metal deposition height prediction method based on multimodal neural network. In Proceedings of the Eighteenth National Conference on Laser Technology and Optoelectronics, Shanghai, China, 10–13 June 2023; Volume 12792, p. 1279211. [Google Scholar] [CrossRef]
- Dong, F.; Kong, L.; Wang, H.; Chen, Y.; Liang, X. Cross-section geometry prediction for laser metal deposition layer-based on multi-mode convolutional neural network and multi-sensor data fusion. J. Manuf. Process. 2023, 108, 791–803. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Di, Y.; Wang, L.; Wang, H.; Zhou, Q. A physics-informed neural network framework to predict 3D temperature field without labeled data in process of laser metal deposition. Eng. Appl. Artif. Intell. 2023, 120, 105908. [Google Scholar] [CrossRef]
- Perani, M.; Baraldo, S.; Decker, M.; Vandone, A.; Valente, A.; Paoli, B. Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks. Robot. Comput.-Integr. Manuf. 2023, 79, 102445. [Google Scholar] [CrossRef]
- Diehl, B.; Mock, C.; Hitch, L.; Rinderspacher, C.; McWilliams, B. Physics-Guided Neural Network for Regularization and Learning Unbalanced Data Sets: A Priori Prediction of Melt Pool Width Variation in Directed Energy Deposition; Technical Report; DEVCOM Army Research Laboratory: Adelphi, MD, USA, 2023. [Google Scholar]
- Liu, Y.; Jack C.P., C.; Hoon, S.; Zhanxiong, M.; Ikgeun, J.; Peipei, L. Real-time corner height estimation for multi-layer directed energy deposition using laser line scanner, vision camera, and artificial neural network. In Proceedings of the 2023 European Conference on Computing in Construction and the 40th International CIB W78 Conference, Crete, Greece, 10–12 July 2023. [Google Scholar] [CrossRef]
- Yang, L.; Sohn, H.; Ma, Z.; Jeon, I.; Liu, P.; Cheng, J.C.P. Real-time layer height estimation during multi-layer directed energy deposition using domain adaptive neural networks. Comput. Ind. 2023, 148, 103882. [Google Scholar] [CrossRef]
- Chen, W.; Zou, B.; Sun, H.; Zheng, Q.; Huang, C.; Li, L.; Liu, J. Research on Curved Parts Surface Quality Detection during Laser-Directed Energy Deposition Based on Blurry Inpainting Network. Adv. Eng. Mater. 2023, 25, 2300898. [Google Scholar] [CrossRef]
- Patil, D.B.; Nigam, A.; Mohapatra, S.; Nikam, S. A Deep Learning Approach to Classify and Detect Defects in the Components Manufactured by Laser Directed Energy Deposition Process. Machines 2023, 11, 854. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Feng, W.; Chew, Y.; Moon, S.K. Multimodal Sensor Fusion for Real-Time Location-Dependent Defect Detection in Laser-Directed Energy Deposition. In Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 20–23 August 2023. [Google Scholar]
- Kong, J.H.; Lee, S.W. Development of Melt-pool Monitoring System based on Degree of Irregularity for Defect Diagnosis of Directed Energy Deposition Process. Int. J. Precis. Eng. Manuf.-Smart Technol. 2023, 1, 137–143. [Google Scholar] [CrossRef]
- Liu, M.; Duan, C.; Li, G.; Cai, Y.; Wang, F.; Li, L. Multi-response optimization of Ni-based laser cladding via principal component analysis and grey relational analysis. Optik 2023, 287, 171122. [Google Scholar] [CrossRef]
- Petrik, J.; Bambach, M. Reinforcement learning and optimization based path planning for thin-walled structures in wire arc additive manufacturing. J. Manuf. Process. 2023, 93, 75–89. [Google Scholar] [CrossRef]
- Shi, S.; Liu, X.; Wang, Z.; Chang, H.; Wu, Y.; Yang, R.; Zhai, Z. Process Parameter Optimization for Laser-Directed Energy Deposition Using Deep Reinforcement Learning. SSRN, 2023; preprint. [Google Scholar]
- Wu, Z.; Xu, Z.; Fan, W.; Poulhaon, F.; Michaud, P.; Joyot, P. Semi-supervised multi-label feature selection algorithm for online monitoring of laser metal deposition manufacturing quality. Measurement 2023, 219, 113301. [Google Scholar] [CrossRef]
- Pandiyan, V.; Cui, D.; Richter, R.A.; Parrilli, A.; Leparoux, M. Real-time monitoring and quality assurance for laser-based directed energy deposition: Integrating co-axial imaging and self-supervised deep learning framework. J. Intell. Manuf. 2025, 36, 909–933. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H. Artificial intelligence revolutionizing the laser cladding industry. In Thermal Claddings for Engineering Applications; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Suárez, A.; Veiga, F.; Villanueva, P.; Ballesteros, T.; Uralde, V. Advancements and Methodologies in Directed Energy Deposition (DED-Arc) Manufacturing: Design Strategies, Material Hybridization, Process Optimization and Artificial Intelligence. In Additive Manufacturing—Present and Sustainable Future, Materials and Applications; Montealegre-Meléndez, I., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Pazireh, S.; Mirazimzadeh, S.E.; Urbanic, J. Application of Linear Mixed-Effects Model, Principal Component Analysis, and Clustering to Direct Energy Deposition Fabricated Parts Using FEM Simulation Data. Materials 2024, 17, 5127. [Google Scholar] [CrossRef]
- Wang, H.; Hao, J.; Ding, M.; Zheng, X.; Yang, H.; Liu, H. Research on Process Control of Laser-Based Direct Energy Deposition Based on Real-Time Monitoring of Molten Pool. Coatings 2024, 14, 1131. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Z.; Liu, W.; Lauria, S.; Zeng, N.; Prieto, C.; Sikström, F.; Liu, X. A New Particle Swarm Optimization Algorithm for Outlier Detection: Industrial Data Clustering in Wire Arc Additive Manufacturing. IEEE Trans. Autom. Sci. Eng. 2024, 21, 1244–1257. [Google Scholar] [CrossRef]
- Farea, S.M.; Unel, M.; Koc, B. Defect Prediction in Directed Energy Deposition using an Ensemble of Clustering Models. In Proceedings of the 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), Beijing, China, 18–20 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Madugula, N.S.; Kumar, Y.; K.E.K, V.; Kumar, S. Benchmarking the quality improvement strategies of wire arc additive manufacturing process using fuzzy QFD approach. Rapid Prototyp. J. 2024, 30, 876–884. [Google Scholar] [CrossRef]
- Sivakumar, M.; Jerald, J.; Balaji, N.; Kannan, G.R.; Shriram, S.; Jayanth, S. Prediction of Mechanical Properties on Wire Arc Additive Manufacturing 31 6L Stainless Steel Using Fuzzy Logic. In Optimization of Advanced Manufacturing Processes; Apple Academic Press: Burlington, ON, Canada, 2024. [Google Scholar]
- Nath, A.; Roy, S.S.; Changdar, A.; Lohar, A.K. Design of an adaptive neuro-fuzzy expert system for predicting surface roughness in laser direct metal deposition. In Challenges and Opportunities in Industrial and Mechanical Engineering: A Progressive Research Outlook; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Cao, Y.; Gao, J.; Wang, J.; Zhao, P.; Wang, Z.; Wang, J.; Dong, Q.; Ma, X.; Zhao, K. Adaptive hybrid control for the formed morphology in powder-based laser metal deposition. J. Laser Appl. 2024, 36, 032029. [Google Scholar] [CrossRef]
- Alcaraz, J.Y.; Sharma, A.; Tjahjowidodo, T. Predicting porosity in wire arc additive manufacturing (WAAM) using wavelet scattering networks and sparse principal component analysis. Weld. World 2024, 68, 843–853. [Google Scholar] [CrossRef]
- Giulio, M.; Joseph, P.; Alessandra, C.; Stephen, V.D.; Luigi, N.; Zengxi, P. Defect monitoring in wire arc additive manufacturing using frequency domain analysis. In Proceedings of the ESAFORM 2024, Tolouse, France, 24–26 April 2024; Volume 41, pp. 50–59. [Google Scholar]
- Bobzin, K.; Heinemann, H.; Johann, L.M. Data-Driven Mitigation of Process Fluctuations in Wire-Arc Spraying. In Proceedings of the ITSC 2024, Milan, Italy, 29 April–1 May 2024. [Google Scholar] [CrossRef]
- Mattera, G.; Caggiano, A.; Nele, L. Optimal data-driven control of manufacturing processes using reinforcement learning: An application to wire arc additive manufacturing. J. Intell. Manuf. 2025, 36, 1291–1310, Erratum in J. Intell. Manuf. 2025, 36, 1311. [Google Scholar] [CrossRef]
- Shafaie, M.; Sarparast, M.; Zhang, H. Integrating data-driven system to predict temperature and distortion in multi-layer direct metal deposition processes. Int. J. Adv. Manuf. Technol. 2024, 134, 545–555. [Google Scholar] [CrossRef]
- Pham, T.Q.D.; Tran, V.X. Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification. Concurr. Eng. 2024, 32, 20–33. [Google Scholar] [CrossRef]
- Choi, B.M.; Hong, S.M. Study on the Applicability of Deep Learning-Based Microscope for Wire Arc Melting Mark Identification Using the Delphi Method; National Fire Research Institute of Korea: Asan-si, Republic of Korea, 2024. [Google Scholar]
- Nadiu, J.B.; Sushma, V.; C.T, J.P.; Dhanush, M.; Senthilkumar, V. A deep learning-based model for defect reorganisation in welding/wire arc additive manufacturing. Weld. Int. 2025, 39, 76–85. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Wang, Y.; Chen, H.; Xiong, J. Monitoring process stability in robotic wire-laser directed energy deposition based on multi-modal deep learning. J. Manuf. Process. 2024, 128, 111–124. [Google Scholar] [CrossRef]
- Cao, X.; Duan, C.; Luo, X.; Zheng, S.; Xu, H.; Hao, X.; Zhang, Z. Deep learning-based rapid prediction of temperature field and intelligent control of molten pool during directed energy deposition process. Addit. Manuf. 2024, 94, 104501. [Google Scholar] [CrossRef]
- Li, H.; Hu, L.; Ye, J.; Wei, W.; Gao, X.; Qian, Z.; Long, Y. A high-precision in-situ monitoring system for laser directed energy deposition melt pool 3D morphology based on deep learning. J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, S.; Guo, J.; Chen, G.; Tang, J.; Wang, F. Classification of melt pool states for defect detection in laser directed energy deposition using FixConvNeXt model. Meas. Sci. Technol. 2025, 36, 015201. [Google Scholar] [CrossRef]
- Wong, V.; Aversa, A.; Rodrigues, A.R. A Deep Learning Model for Estimating the Quality of Bimetallic Tracks Obtained by Laser Powder-Directed Energy Deposition. Materials 2024, 17, 5653. [Google Scholar] [CrossRef] [PubMed]
- Bourlesas, N.; Tzimanis, K.; Sabatakakis, K.; Bikas, H.; Stavropoulos, P. Over-deposition assessment of Direct Energy Deposition (DED) using melt pool geometric features and Machine Learning. Procedia CIRP 2024, 124, 797–802. [Google Scholar] [CrossRef]
- Paulus, P.; Ruppert, Y.; Andreicovici, A.; Vielhaber, M.; Griebsch, J. Comparison of machine learning based methods on prediction quality of thin-walled geometries using laser-based Direct Energy Deposition. Procedia CIRP 2024, 124, 781–784. [Google Scholar] [CrossRef]
- Brooke, R.; Qiu, D.; Le, T.; Gibson, M.A.; Zhang, D.; Easton, M. Optimising the manufacturing of a β-Ti alloy produced via direct energy deposition using small dataset machine learning. Sci. Rep. 2024, 14, 6975. [Google Scholar] [CrossRef]
- Peter, R.E.; Kumaraguru, S. Prediction of catchment efficiency in direct energy deposition using dimensional analysis and machine learning. Proc. Inst. Mech. Eng. Part B 2024, 09544054241289514. [Google Scholar] [CrossRef]
- Shaik, A.; Kenchugonde, S.K.; Kuruva, S.; Sabbu, D.; Y, A.K.R.; CH R, V.K. Prediction of weld bead cross-sectional area in wire arc additive manufacturing using vision system integrated with machine learning approach. Int. J. Interact. Des. Manuf. (IJIDeM) 2025, 19, 465–475. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Chen, H.; Xiong, J. Searching optimal process parameters for desired layer geometry in wire-laser directed energy deposition based on machine learning. Virtual Phys. Prototyp. 2024, 19, e2352066. [Google Scholar] [CrossRef]
- Fukuyama, R.; Mori, K.; Satsuta, T.; Ishikawa, T.; Okuda, M.; Nakamura, N.; Senke, N. Robust Parameter Optimization of Multi-Objective Variables in Laser Metal Deposition Using Machine Learning. Q. J. Jpn. Weld. Soc. 2023, 42, 51–61. [Google Scholar] [CrossRef]
- Gökhan, E.; Artem, A.; Alexander, S.; Sebastian, H. Machine learning application for optimization of laser directed energy deposition process for aerospace component rapid prototyping in additive manufacturing. In Proceedings of the Material Forming—ESAFORM 2024, Toulouse, France, 24–26 April 2024. [Google Scholar]
- Selvam, P.P.; Prabhakaran, S.; Vinod, B.; Jishnu, T. A review of energy efficiency and Machine learning analysis for additive manufacturing of direct laser metal deposition. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Mattera, G.; Polden, J.; Caggiano, A.; Commins, P.; Nele, L.; Pan, Z. Anomaly Detection of Wire Arc Additively Manufactured Parts via Surface Tension Transfer through Unsupervised Machine Learning Techniques. Procedia CIRP 2024, 126, 686–691. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Pan, Z.; Zhou, W. Recent progress of sensing and machine learning technologies for process monitoring and defects detection in wire arc additive manufacturing. J. Manuf. Process. 2024, 125, 489–511. [Google Scholar] [CrossRef]
- Chen, L.; Moon, S.K. In-situ defect detection in laser-directed energy deposition with machine learning and multi-sensor fusion. J. Mech. Sci. Technol. 2024, 38, 4477–4484. [Google Scholar] [CrossRef]
- Rahman, M.A.; Jamal, S.; Cruz, M.V.; Silwal, B.; Taheri, H. In situ process monitoring of multi-layer deposition in wire arc additive manufacturing (WAAM) process with acoustic data analysis and machine learning. Int. J. Adv. Manuf. Technol. 2024, 132, 5087–5101. [Google Scholar] [CrossRef]
- Mattera, G.; Polden, J.; Norrish, J. Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning. Weld. World 2024, 68, 2853–2867. [Google Scholar] [CrossRef]
- Assad, A.; Bevans, B.D.; Potter, W.; Rao, P.; Cormier, D.; Deschamps, F.; Hamilton, J.D.; Rivero, I.V. Process mapping and anomaly detection in laser wire directed energy deposition additive manufacturing using in-situ imaging and process-aware machine learning. Mater. Des. 2024, 245, 113281. [Google Scholar] [CrossRef]
- Mattera, G.; Yap, E.W.; Polden, J.; Brown, E.; Nele, L.; Van Duin, S. Utilising unsupervised machine learning and IoT for cost-effective anomaly detection in multi-layer wire arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2024, 135, 2957–2974. [Google Scholar] [CrossRef]
- Wang, M.; Kashaev, N. On the maintenance of processing stability and consistency in laser-directed energy deposition via machine learning. J. Manuf. Syst. 2024, 73, 126–142. [Google Scholar] [CrossRef]
- Wang, J.; Kim, E.S.; Kim, H.S.; Lee, B.J. A machine learning approach for predicting evaporation-induced composition variability in directed energy deposition in-situ alloying. Addit. Manuf. 2024, 92, 104384. [Google Scholar] [CrossRef]
- Valizadeh Sotubadi, S.; Hendrickson, N.; Nguyen, V. Integrated Data Processing and Model Selection in Machine Learning Framework Development to Predict Dimensional Errors in Wire Arc Additive Manufacturing (WAAM). In Proceedings of the ASME 2024 19th International Manufacturing Science and Engineering Conference, Knoxville, TN, USA, 17–21 June 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Ng, C.H.; Bermingham, M.; Dargusch, M. Machine learning driven instance segmentation providing new porosity insights into wire arc directed energy deposited Ti-22V-4Al. Addit. Manuf. 2024, 90, 104323. [Google Scholar] [CrossRef]
- Shah, H.; Fuse, K. Machine Learning Approach for Predicting Bead Geometry of Stainless Steel in Wire arc Additive Manufacturing. EPSTEM 2024, 28, 246–251. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, C.M.; Kim, D.H. Determining optimal bead central angle by applying machine learning to wire arc additive manufacturing (WAAM). Heliyon 2024, 10, e23372. [Google Scholar] [CrossRef]
- Gihr, M.; Rashid, A.; Melkote, S.N. Bead geometry prediction and optimization for corner structures in directed energy deposition using machine learning. Addit. Manuf. 2024, 84, 104080. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, X.; Dong, H.; Zhang, H. Modelling and Prediction of Process Parameters with Low Energy Consumption in Wire Arc Additive Manufacturing Based on Machine Learning. Metals 2024, 14, 567. [Google Scholar] [CrossRef]
- kumar, B.; Rajak, S. A Comparative Study of Machine Learning Models for Predicting Single Bead Geometry of SS316L Depositions by GTAW Wire Arc Additive Manufacturing Process. Trans. Indian Inst. Met. 2024, 78, 15. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar, P.; Mondal, S.; Maji, K. Prediction of Surface Roughness in Wire Arc Additive Manufactured Components Using Machine Learning. In Advances in Applied Mechanics; Kumar, D., Sahoo, V., Mandal, A.K., Shukla, K.K., Eds.; Springer: Singapore, 2024; pp. 373–380. [Google Scholar]
- Rahmani Dehaghani, M.; Sajadi, P.; Tang, Y.; Wang, G.G. Low-Cost Melt Pool Temperature Prediction Using Visible Light Camera and Machine Learning in Laser Hot-Wire Directed Energy Deposition. In Proceedings of the ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 25–28 August 2024. [Google Scholar] [CrossRef]
- McLain, B.; Mathenia, R.; Sparks, T.; Liou, F. Machine Vision to Provide Quantitative Analysis of Meltpool Stability for a Coaxial Wire Directed Energy Deposition Process. Materials 2024, 17, 5311. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Duan, C.; Luo, X.; Zheng, S.; Hao, X.; Shang, D.; Zhang, Z. Physics-informed machine learning approach for molten pool morphology prediction and process evaluation in directed energy deposition of 12CrNi2 alloy steel. J. Manuf. Process. 2024, 119, 806–826. [Google Scholar] [CrossRef]
- Kitt, A.; Sun, C.; Yuan, L. Machine Learning Enhanced Development of Functionally Graded Materials Enabled by Directed Energy Deposition; Technical Report; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2024. [Google Scholar] [CrossRef]
- Arunadevi, M.; Shivashankar, R.; Durga Prasad, C.; Baitha, R.; Suresh Kumar, R.; Choudhary, R.K.; Kollur, S.; Kapadani, K.R.; ShivaPrakash, S. Predictive wear analysis of SS316L fabricated by direct energy deposition using machine learning techniques. Int. J. Interact. Des. Manuf. (IJIDeM) 2024. [Google Scholar] [CrossRef]
- Fu, J.; Yang, Q.; Devojno, O.; Kardapolava, M.; Kasiakova, I.; Wang, C. Wear Resistance Design of Laser Cladding Ni-Based Self-Fluxing Alloy Coating Using Machine Learning. Materials 2024, 17, 5651. [Google Scholar] [CrossRef]
- Kazmi, K.H.; Chandra, M.; Rajak, S.; Sharma, S.K.; Mandal, A.; Das, A.K. Implementing machine learning in robotic wire arc additive manufacturing for minimizing surface roughness. Int. J. Comput. Integr. Manuf. 2025, 38, 255–270. [Google Scholar] [CrossRef]
- Yang, J.; Kong, L.; Ye, H. Surface hardness determination of laser cladding using laser-induced breakdown spectroscopy and machine learning (PLSR, CNN, ResNet, and DRSN). Appl. Opt. 2024, 63, 2509–2517. [Google Scholar] [CrossRef]
- Kumar, P.; Mondal, S.; Maji, K. Analysis and Optimization of Super Duplex Stainless Steel Deposition in Wire Arc Additive Manufacturing Using Machine Learning Techniques. SAE Int. J. Mater. Manuf. 2024, 18, 109–122. [Google Scholar] [CrossRef]
- Mamedipaka, R.; Hemachandra, M.; Mishra, A.; Sinhmar, S.; Thapliyal, S. Machine learning-assisted wire arc additive manufacturing and heat input effect on mechanical and corrosion behaviour of 316 L stainless steels. Structures 2024, 68, 107126. [Google Scholar] [CrossRef]
- Dang, L.; He, X.; Tang, D.; Xin, H.; Zhan, Z.; Wang, X.; Wu, B. Pore-induced fatigue failure: A prior progressive fatigue life prediction framework of laser-directed energy deposition Ti-6Al-4V based on machine learning. Theor. Appl. Fract. Mech. 2024, 130, 104276. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Y.; Lv, W. Machine learning-based crack prediction modeling of laser cladding coatings. J. Phys. Conf. Ser. 2024, 2825, 012022. [Google Scholar] [CrossRef]
- Diwakar, V.; Sharma, A.; Yusufzai, M.Z.K.; Vashista, M. Machine learning-based prediction of single clad characteristics and non-destructive characterization of multi-layer deposited FeCoNiCrMo HEA on EN24 via laser cladding. Mater. Today Commun. 2024, 41, 110839. [Google Scholar] [CrossRef]
- Yang, H.; Geng, H.; Alfano, M.; Yuan, J. Comparative assessment of supervised machine learning algorithms for predicting geometric characteristics of laser cladded inconel 718. Mater. Res. Express 2024, 11, 046516. [Google Scholar] [CrossRef]
- Hu, G.; Zha, R.; Wang, Y.; Cao, J.; Guo, P. Digital Fringe Projection for Interlayer Print Defect Characterization in Directed Energy Deposition. In Proceedings of the 2024 International Symposium on Flexible Automation, Seattle, WA, USA, 21–24 July 2024. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, X.; Fang, Z.; Liang, J. Electromagnetic shielding material database and machine learning preparing for laser cladding FeCo-based alloy. Adv. Eng. Innov. 2024, 7, 55–59. [Google Scholar] [CrossRef]
- Hu, K.; Wang, Y.; Li, F.; Zhou, Y.; Li, W. Thermal-fluid modeling and physics-informed machine learning for predicting molten pool depth in single-layer multi-track fiber laser cladding. Int. J. Adv. Manuf. Technol. 2024, 135, 3591–3613. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Ishfaq, K.; Khraisheh, M. Inconel-718 processing windows by directed energy deposition: A framework combining computational fluid dynamics and machine learning models with experimental validation. Int. J. Adv. Manuf. Technol. 2024, 130, 3997–4011. [Google Scholar] [CrossRef]
- Zamiela, C.; Stokes, R.; Tian, W.; Doude, H.; Priddy, M.W.; Bian, L. Physics-Informed Approximation of Internal Thermal History for Surface Deformation Predictions in Wire Arc Directed Energy Deposition. J. Manuf. Sci. Eng 2024, 146, 081007. [Google Scholar] [CrossRef]
- Wong, S.J.L.; Chen, C.; Tan, E.Z.; Li, H. Integration of physics-based data in deep learning model training for predicting the effect of sulfur content in the directed energy deposition process. Int. J. AI Mater. Des. 2024, 1, 44–61. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Li, W.; Liu, B.; Ma, Z.; Song, J.; Wang, T.; Lyu, Z.; Hu, G.; Fan, H.; et al. A physical simulation-machine learning model for optimal process schemes in laser-based directed energy deposition process. Opt. Laser Technol. 2024, 177, 111096. [Google Scholar] [CrossRef]
- Bevans, B.; Assad, A.; Hamilton, J.; Rao, P.; Rivero, I. In-Process Monitoring of Process Stability in Laser Wire Directed Energy Deposition Using Physics-Based Machine Learning. In Proceedings of the ASME 2024 19th International Manufacturing Science and Engineering Conference, Knoxville, TN, USA, 17–21 June 2024. [Google Scholar] [CrossRef]
- Nelaturu, P.; Hattrick-Simpers, J.R.; Moorehead, M.; Jambur, V.; Szlufarska, I.; Couet, A.; Thoma, D.J. Multi-principal element alloy discovery using directed energy deposition and machine learning. Mater. Sci. Eng. A 2024, 891, 145945. [Google Scholar] [CrossRef]
- Cousin, F.; Prakash, V.J.; Weber, J.U.; Kelbassa, I. Digitalization of a Robot-Based Directed Energy Deposition Process for In-Situ Monitoring and Post-Process Data Analytics. In Proceedings of the ASME 2024 19th International Manufacturing Science and Engineering Conference, Knoxville, TN, USA, 17–21 June 2024. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Pang, M.; Wu, Y.; Yang, R.; Wu, Z.; Cai, G. A novel bilateral stream neural network for melt pool monitoring during laser direct energy deposition. J. Intell. Fuzzy Syst. 2024, 46, 7727–7738. [Google Scholar] [CrossRef]
- Xu, D.; Lu, Z.; Chen, L.; Zhang, J. Prediction of Tensile Properties in Inconel 625 Superalloy Fabricated by Wire Arc Additive Manufacturing Using Improved Artificial Neural Network. Appl. Sci. 2024, 14, 3240. [Google Scholar] [CrossRef]
- Di, Y.; Zheng, Z.; Pang, S.; Li, J.; Zhong, Y. Dimension Prediction and Microstructure Study of Wire Arc Additive Manufactured 316L Stainless Steel Based on Artificial Neural Network and Finite Element Simulation. Micromachines 2024, 15, 615. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, N.; Arumugam, M. Optimizing Cold Metal Transfer-Wire Arc Additive Manufacturing Parameters for Enhanced Mechanical Properties and Microstructure of ER5356 Aluminum Alloy Using Artificial Neural Network and Response Surface Methodology. J. Mater. Eng. Perform. 2025, 34, 4853–4872. [Google Scholar] [CrossRef]
- Fiho, C.A.M.D.; Sena, M.E.N.; Guimarães, J.A.C.; Maciel, L.; Neto, R.M.d.A.C. Electric arc stability classification through acoustic emissions using convolutional neural networks in wire arc additive manufacturing. In Proceedings of the XII Congresso Nacional de Engenharia Mecânica—CONEM 2024, Natal, Brazil, 29 July–2 August 2024. [Google Scholar]
- Franke, J.; Heinrich, F.; Reisch, R.T. Vision based process monitoring in wire arc additive manufacturing (WAAM). J. Intell. Manuf. 2025, 36, 1711–1721. [Google Scholar] [CrossRef]
- Pivkin, P.; Khodanovich, N.; Grigoriev, S.; Peretyagin, P. Method for detecting defects in direct metal deposition using a neural network. In Proceedings of the SPIE Photonics Europe, Strasbourg, France, 7–12 April 2024; Volume 13005, p. 1300511. [Google Scholar] [CrossRef]
- Hajializadeh, F.; Ince, A. Residual stress computation in direct metal deposition using integrated artificial neural networks and finite element analysis. Mater. Today Commun. 2024, 38, 108471. [Google Scholar] [CrossRef]
- Sahraeidolatkhaneh, A.; Nilsen, M.; Mishra, A.K.; Sikström, F. In-situ Imaging for Temperature Estimation in Laser Directed Energy Deposition with Wire Feedstock Using a Convolutional Neural Network. In Proceedings of the 2024 New Trends in Signal Processing (NTSP), Demanovska Dolina, Slovakia, 16–18 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, L.; Yang, Z.; Ning, J. In Situ Monitoring and Innovative Feature Fusion Neural Network for Enhanced Laser-Directed Energy Deposition Track Geometry Prediction and Control. IEEE Trans. Instrum. Meas. 2024, 73, 5022110. [Google Scholar] [CrossRef]
- Ye, J.; Patel, M.; Alam, N.; Vargas-Uscategui, A.; Cole, I. A dimensionless group-incorporating artificial neural network (DI-ANN) model for single-track depth prediction of SS316L for laser-directed energy deposition (L-DED). Int. J. Adv. Manuf. Technol. 2024, 135, 3529–3545. [Google Scholar] [CrossRef]
- Wu, S.H.; Tariq, U.; Joy, R.; Mahmood, M.A.; Malik, A.W.; Liou, F. A Robust Recurrent Neural Networks-Based Surrogate Model for Thermal History and Melt Pool Characteristics in Directed Energy Deposition. Materials 2024, 17, 4363. [Google Scholar] [CrossRef] [PubMed]
- Asadi, R.; Queguineur, A.; Wiikinkoski, O.; Mokhtarian, H.; Aihkisalo, T.; Revuelta, A.; Ituarte, I.F. Process monitoring by deep neural networks in directed energy deposition: CNN-based detection, segmentation, and statistical analysis of melt pools. Robot. Comput.-Integr. Manuf. 2024, 87, 102710. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Q.; Tang, W.; Yang, J. Acoustic Signal-Based Defect Identification for Directed Energy Deposition-Arc Using Wavelet Time-Frequency Diagrams. Sensors 2024, 24, 4397. [Google Scholar] [CrossRef]
- Fernández-Zabalza, A.; Veiga, F.; Suárez, A.; López, J.R. The Use of Virtual Sensors for Bead Size Measurements in Wire-Arc Directed Energy Deposition. Appl. Sci. 2024, 14, 1972. [Google Scholar] [CrossRef]
- Ribeiro, B.L.; Barbosa, J.; Mota, L.; Gil, J.; Amaral, R.; Barbosa, M.; Santos, R.F.; Sequeiros, E.W. Microstructural analysis of Inconel 718 manufactured via direct energy deposition: Response surface methodology for process parameters optimisation and post-heat treatment. Prog. Addit. Manuf. 2024, 10, 3879–3891. [Google Scholar] [CrossRef]
- Harman, M.; Çetinkaya, C.; Yılmaz, O.; Bol, N. Comparative Process Parameter Optimization For Wire Arc Additive Manufacturing (WAAM) of E120C-GH4 Metal Cored and ER120S-G Solid Wire. Politek. Derg. 2024, 27, 2013–2028. [Google Scholar] [CrossRef]
- Lekkala, N.; Prasad, K.S. Parametric optimization of weld bead of aluminium 6061 fabricated through wire arc additive manufacturing. Eng. Res. Express 2024, 6, 046001. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, Y.; Yang, H.; Zhao, J. Process Parameters Optimization and Numerical Simulation of AlCoCrFeNi High-Entropy Alloy Coating via Laser Cladding. Materials 2024, 17, 4243. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.H.; Menon, N.; Basak, A. Transferring melt pool knowledge between multiple materials in laser-directed energy deposition via Gaussian process regression. Eng. Comput. 2025, 41, 703–722. [Google Scholar] [CrossRef]
- Xv, Y.; Sun, Y.; Zhang, Y. Prediction Method for High-Speed Laser Cladding Coating Quality Based on Random Forest and AdaBoost Regression Analysis. Materials 2024, 17, 1266. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Wang, J.; Lu, Y.; Han, J.; Guo, B.; Xie, T. Prediction of Geometric Characteristics of Laser Cladding Layer Based on Least Squares Support Vector Regression and Crested Porcupine Optimization. Micromachines 2024, 15, 919. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Vafaei, R.; Shoja Razavi, R. Statistical-experimental modeling of the effect of process parameters on geometric characteristics of laser cladding of stellite 6 on SS316 using second-order regression. J. Mater. Res. Technol. 2024, 28, 2727–2739. [Google Scholar] [CrossRef]
- Bian, Y.; He, X.; Tian, C.; Guo, J.; Chen, B.; Dong, B.; Li, S.; Yu, G. Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding, 2024. [CrossRef]
- Chalicheemalapalli Jayasankar, D.; Gnaase, S.; Lehnert, D.; Walter, A.; Rohling, R.; Tröster, T. Effect of Substrate Temperature on Bead Track Geometry of 316L in Directed Energy Deposition: Investigation and Regression Modeling. Metals 2024, 14, 1353. [Google Scholar] [CrossRef]
- Khaimovich, A.I.; Nosova, E.; Baliakin, A.; Zlobin, E.; Oleinik, M.; Kuzina, A. Study of Variability Phenomena in Direct Energy Deposition of Nickel-Based Superalloy on Geometric Accuracy and Residual Stress Formation. Mater. Sci. Forum 2024, 1139, 21–30. [Google Scholar] [CrossRef]
- Petruse, R.E.; Langa, M.C. Enhancing Metal Forging Tools and Moulds: Advanced Repairs and Optimisation Using Directed Energy Deposition Hybrid Manufacturing. Appl. Sci. 2024, 14, 567. [Google Scholar] [CrossRef]
- Thanumoorthy, R.S.; Jadhav, S.V.; Oyyaravelu, R.; Bontha, S.; A S S, B. Effect of surface remelting on the characteristics of IN718 components fabricated using laser powder directed energy deposition. Eng. Res. Express 2024, 6, 035548. [Google Scholar] [CrossRef]
- Shi, S.; Liu, X.; Wang, Z.; Chang, H.; Wu, Y.; Yang, R.; Zhai, Z. An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning. J. Manuf. Process. 2024, 120, 1130–1140. [Google Scholar] [CrossRef]
- Ren, K.; Liu, N.; Zhang, W.; Chew, Y.; Zhang, Y.; Fuh, J.Y.; Bi, G. Laser power planning in directed energy deposition by deep reinforcement learning. Int. J. Adv. Manuf. Technol. 2024, 135, 4683–4694. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Zhang, C.; Han, B.; Wang, Z.; Fan, W.; Xu, Z. Process parameter optimisation method based on data-driven prediction model and multi-objective optimisation for the laser metal deposition manufacturing process monitoring. Comput. Ind. Eng. 2025, 204, 111108. [Google Scholar] [CrossRef]
- Veer, P.; Mudakavi, D.; M Adinarayanappa, S. Optimizing multi-physics variables in wire arc additive manufacturing for weld bead aspect ratio: A machine learning approach. Prog. Addit. Manuf. 2025. [Google Scholar] [CrossRef]
- Ghasempour-Mouziraji, M.; Afonso, D.; Alves de Sousa, R. On the Prediction and Optimisation of Processing Parameters in Directed Energy Deposition of SS316L via Finite Element Simulation and Machine Learning. Materials 2025, 18, 1039. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, C.; Liu, J.; Sun, H.; Li, S.; Han, X. Optimization of pulse laser cladding process parameters and analysis of heat and mass transfer and phase transformation based on GA-BP neural network. Appl. Phys. A 2025, 131, 306. [Google Scholar] [CrossRef]
- Hu, K.; Huang, Q.; Wang, L.; Zhou, Y.; Li, W. Optimization of multi-track, multi-layer laser cladding process parameters using Gaussian process regression and improved multi-objective particle swarm optimization. Int. J. Adv. Manuf. Technol. 2025, 137, 3503–3523. [Google Scholar] [CrossRef]
- Liu, T.; Wang, R.; Han, B.; Wang, R. Advanced Multi-Objective Optimization for Laser Cladding of H13 Die Steel with CFOA. Materials 2025, 18, 1617. [Google Scholar] [CrossRef]
- Shao, D.; Bi, X.; Hong, M.; Li, R. Optimization of Process Parameters for Laser-Directed Energy Deposition Coatings of FeCoNi + 1%Y2O3 High-Entropy Alloy Based on Response Surface Methodology. Materials 2025, 18, 883. [Google Scholar] [CrossRef]
- Ma, L.; Kong, X.; Cheng, L.; Liang, J.; Li, J.; Jin, Z.; Jiao, Z.; Zhang, X.; Sun, C. Fast scanning pattern selection in laser directed energy deposition via simulation data-driven based deep regression method. J. Manuf. Process. 2025, 133, 367–379. [Google Scholar] [CrossRef]
- Yang, J.; Fang, X.; Chen, R.; Li, K.; Huang, K.; Lu, B. Data-driven control of slicing thickness in wire directed energy deposition via on-line monitoring the shifting behavior of arc voltage drop. Int. J. Adv. Manuf. Technol. 2025, 137, 5821–5835. [Google Scholar] [CrossRef]
- Irfan, M.; Fu, Y.F.; Singh, S.; Butt, S.U.; Arif, A.F.; Ibhadode, O.; Qureshi, A. Data-driven parameter optimization for bead geometry in wire arc additive manufacturing of 17-4 PH stainless steel. J. Adv. Join. Process. 2025, 12, 100319. [Google Scholar] [CrossRef]
- Mattera, G.; Polden, J.; Luigi, N.E.L.E. Monitoring Wire Arc Additive Manufacturing process of Inconel 718 thin-walled structure using wavelet decomposition and clustering analysis of welding signal. J. Adv. Manuf. Sci. Technol. 2025, 5, 2025006. [Google Scholar] [CrossRef]
- Li, R.; Ma, H.; Wang, R.; Song, H.; Zhou, X.; Wang, L.; Zhang, H.; Zeng, K.; Xia, C. Application of unsupervised learning methods based on video data for real-time anomaly detection in wire arc additive manufacturing. J. Manuf. Process. 2025, 143, 37–55. [Google Scholar] [CrossRef]
- Abdulrazaq, M.M.; AL-Khafaji, M.M.H.; Salahaddin, A.K.; Krinke, S.; Zeidler, H. Out-Of-Position Bead Geometry Prediction in Wire Arc Additive Manufacturing (WAAM) Using Fuzzy Logic-Based System. Manag. Syst. Prod. Eng. 2025, 33, 46–53. [Google Scholar] [CrossRef]
- Chitral, S.; Nama, B.S.S.; Penamakuri, S.S.; Kiran, D.V. Novel on-site layer dimensioning and deep learning-enabled predictive modelling for wire arc additive manufacturing. Prog. Addit. Manuf. 2025, 10, 6747–6767. [Google Scholar] [CrossRef]
- Zhu, G.; Li, B.; Jiang, C. Deep Learning Model-Driven Pore Detection for Laser Directed Energy Deposition under Varying Brightness and Image Size Conditions. Addit. Manuf. Front. 2025, 4, 200216. [Google Scholar] [CrossRef]
- Cai, Y.; Li, C.; Chen, H.; Xiong, J. Towards automatic anomaly detection and diagnosis in positional arc-directed energy deposition based on deep learning. J. Manuf. Syst. 2025, 79, 1–13. [Google Scholar] [CrossRef]
- Yang, J.; Liu, G.; Zhu, W.; Zhang, Y.; Zhou, W.; Liu, D.; Lin, Y. High-precision and ultraspeed monitoring of melt-pool morphology in laser-directed energy deposition using deep learning. Addit. Manuf. Front. 2025, 4, 200199. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Chen, C.; Liu, Y.; Liang, Y.; Chi, Y. Automatic identification, classification, localization and quantitative evaluation of surface defects for wire-arc directed energy deposition using deep learning and 3D point cloud processing. Opt. Laser Technol. 2025, 183, 112413. [Google Scholar] [CrossRef]
- Chung Baek, A.M.; Kim, T.; Seong, M.; Lee, S.; Kang, H.; Park, E.; Jung, I.D.; Kim, N. Multimodal deep learning for enhanced temperature prediction with uncertainty quantification in directed energy deposition (DED) process. Virtual Phys. Prototyp. 2025, 20, e2474532. [Google Scholar] [CrossRef]
- Luo, L.; Lian, G.; Zhang, X.; Feng, M.; Lan, R. An automatic measurement method of laser cladding coating defects based on deep learning. J. Mater. Sci. 2025, 60, 7984–8002. [Google Scholar] [CrossRef]
- Sharma, R.; Guo, Y.B. Thermo-mechanical physics-informed deep learning for prediction of thermal stress evolution in laser metal deposition. Eng. Appl. Artif. Intell. 2025, 157, 111554. [Google Scholar] [CrossRef]
- Gholami, E.; Batebi, S. Simulation-Based Machine Learning for Predicting Clad Layer Geometry in Laser Direct Energy Deposition. Trans. Indian Inst. Met. 2025, 78, 94. [Google Scholar] [CrossRef]
- Kumar, A.; Das, D.; Raj, N.D.; Bag, S.; Srivastava, V.C. Comparison of Machine Learning Performance for the Prediction of Melting Efficiency and Bead Geometry in wire Arc Additive Manufacturing Process. Arch. Metall. Mater. 2025, 70, 29–38. [Google Scholar] [CrossRef]
- Šket, K.; Brezočnik, M.; Karner, T.; Belšak, R.; Ficko, M.; Vuherer, T.; Gotlih, J. Predictive Modelling of Weld Bead Geometry in Wire Arc Additive Manufacturing. J. Manuf. Mater. Process. 2025, 9, 67. [Google Scholar] [CrossRef]
- Imran, M.M.; Kang, J.; Kim, Y.; Jung, G.; Park, T.; Che Idris, A.; Suh, J.H.; De Silva, L.C.; Abas, P.E.; Kim, Y.B. Prediction of melt pool height based on the spatiotemporal adjacency features in laser metal deposition using machine learning. Prog. Addit. Manuf. 2025. [Google Scholar] [CrossRef]
- Mishra, A.; Jatt, V.; Sefene, E.M.; Salunkhe, S.; Cep, R.; Abouel Nasr, E. Supervised Machine Learning and Physics Machine Learning approach for prediction of peak temperature distribution in Additive Friction Stir Deposition of Aluminium Alloy. PLoS ONE 2025, 20, e0309751. [Google Scholar] [CrossRef]
- Bayat, E.; Mohammadpanah, A.; Jin, X. Enhanced melt pool temperature prediction by leveraging its temperature history in directed energy deposition using machine learning. Int. J. Adv. Manuf. Technol. 2025, 137, 5149–5162. [Google Scholar] [CrossRef]
- He, W.; Zhu, L.; Liu, C.; Jiang, H. Metal Additive Manufacturing and Molten Pool Dynamic Characterization Monitoring: Advances in Machine Learning for Directed Energy Deposition. Metals 2025, 15, 106. [Google Scholar] [CrossRef]
- Kishor, G.; Mugada, K.K.; Mahto, R.P. Sensor-Integrated Data Acquisition and Machine Learning Implementation for Process Control and Defect Detection in Wire Arc-Based Metal Additive Manufacturing. Precis. Eng. 2025, 95, 163–187. [Google Scholar] [CrossRef]
- Mattera, G.; Nele, L. Machine learning approaches for real-time process anomaly detection in wire arc additive manufacturing. Int. J. Adv. Manuf. Technol. 2025, 137, 2863–2888. [Google Scholar] [CrossRef]
- Ji, X.C.; Chen, R.S.; Lu, C.X.; Zhou, J.; Zhang, M.Q.; Zhang, T.; Yu, H.L.; Yin, Y.L.; Shi, P.J.; Zhang, W. Recent advances in machine learning for defects detection and prediction in laser cladding process. Next Mater. 2025, 7, 100404. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, B.; Lin, D.; Tan, C.; Song, X. Laser-directed energy deposition powder flow fault detection based on acoustic emission sensing. Rapid Prototyp. J. 2025; ahead-of-print. [Google Scholar] [CrossRef]
- Mattera, G.; Caggiano, A.; Nele, L. Energy Efficiency Optimisation in Wire arc Additive Manufacturing of Invar 36 Alloy via Intelligent Data-Driven Techniques. Int. J. Precis. Eng.-Manuf.-Green Technol. 2025, 12, 905–917. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, P.; Li, Z.; Zhang, J. Rapid optimization of iron-based alloy laser cladding process based on orthogonal experiment and machine learning for Q345. Opt. Laser Technol. 2025, 182, 112086. [Google Scholar] [CrossRef]
- Le Van, T.; Dinh, D.M.; Bui, M.C.; Mai, Q.H.; Pham, Q.H.; Quinsat, Y.; Paris, H. Optimizing process stability and energy efficiency in wire arc additive manufacturing of nickel-based superalloys using machine learning. Int. J. Adv. Manuf. Technol. 2025, 138, 4635–4659. [Google Scholar] [CrossRef]
- Gao, J.; Shan, T.; Yang, Y.; Gong, Z.; Kong, X.; Qin, Y.; Huang, M.; Yang, S. The process optimization and wear resistance of dual-phase high-entropy alloy coatings by laser cladding based on machine learning. Tribol. Int. 2025, 211, 110907. [Google Scholar] [CrossRef]
- Afolabi, S.O.; Akinsooto, O. Conceptual Framework for Mitigating Cracking in Superalloy Structures During Wire Arc Additive Manufacturing (WAAM). Int. J. Multidiscip. Res. Growth Eval. 2023, 4, 803–813. [Google Scholar] [CrossRef]
- Sharma, R.; Guo, Y.B. Physics-Informed Machine Learning of Thermal Stress Evolution in Laser Metal Deposition. In Proceedings of the TMS 2025 154th Annual Meeting & Exhibition Supplemental Proceedings; Springer: Cham, Switzerland, 2025; pp. 550–559. [Google Scholar]
- Shu, L.; Huang, T.; Qiu, Y.; Shi, J.; Li, A.; Li, P. Machine learning assisted hardness prediction and experimental verification of laser cladding coatings. Mater. Today Commun. 2025, 46, 112551. [Google Scholar] [CrossRef]
- Xu, K.; Mahmoud, Y.; Manoochehri, S.; Vallabh, C.K.P. Using acoustic emission signal analysis and machine learning algorithms for predicting mechanical hardness in laser directed energy deposition parts. Int. J. Adv. Manuf. Technol. 2025, 138, 4455–4474. [Google Scholar] [CrossRef]
- Wang, X.; Sridar, S.; Klecka, M.; Xiong, W. Rapid data acquisition and machine learning-assisted composition design of functionally graded alloys via wire arc additive manufacturing. Npj Adv. Manuf. 2025, 2, 17. [Google Scholar] [CrossRef]
- He, F.; Yuan, L.; Mu, H.; Yang, J.; Ding, D.; Li, H.; Pan, Z. A recurrent neural network-based monitoring system using time-sequential molten pool images in wire arc directed energy deposition. Mech. Syst. Signal Process. 2025, 232, 112733. [Google Scholar] [CrossRef]
- Bappy, M.M.; Fullington, D.; Bian, L.; Tian, W. Adaptive Thermal History De-Identification for Privacy-Preserving Data Sharing of Directed Energy Deposition Processes. J. Comput. Inf. Sci. Eng 2025, 25, 031006. [Google Scholar] [CrossRef]
- Man, Z.; Guo, Z.; Zhou, J.; Jiang, H.; Liu, D.; Lei, Z.; Bai, R.; Yang, Z.; Yang, T.; Chen, M.; et al. Convolutional neural network for heat source parameter recognition of TC4 laser cladding driven by melt pool morphology and contour deformation field data. Opt. Laser Technol. 2025, 187, 112874. [Google Scholar] [CrossRef]
- Dang, L.; He, X.; Tang, D.; Xin, H.; Wu, B. A fatigue life prediction framework of laser-directed energy deposition Ti-6Al-4V based on physics-informed neural network. Int. J. Struct. Integr. 2025, 16, 327–354. [Google Scholar] [CrossRef]
- Xie, H.J.; Bassett, J.; Adibi, S.; Dickel, D.; Sharma, G.; Storey, J.; Dozier, H.; Mun, S. Enhanced Temperature Prediction in Wire Arc-Directed Energy Deposition Using Physics-Informed Neural Networks. In Proceedings of the ASME 2025 Aerospace Structures, Structural Dynamics, and Materials Conference, Houston, TX, USA, 5–7 May 2025. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zha, X.; Lu, Y.; Li, K.; Xu, J.; Xie, T. Analysis and Prediction of Melt Pool Geometry in Rectangular Spot Laser Cladding Based on Ant Colony Optimization-Support Vector Regression. Micromachines 2025, 16, 224. [Google Scholar] [CrossRef]
- Khaimovich, A.; Oleynik, M.; Balyakin, A.; Zlobin, E.; Kudriashova, M.; Nosova, E. Study of variability phenomena during direct metal deposition of nickel based superalloy on residual porosity and microhardness. EPJ Web Conf. 2025, 318, 01009. [Google Scholar] [CrossRef]
- Li, R.; Ma, H.; Zeng, K.; Suo, H.; Li, C.; Fu, Y.; Zhang, M.; Zhang, M.; Fang, X. Differential Evolution-Optimized Multi-Output Support Vector Regression-Based Prediction of Weld Bead Morphology in Wire-Fed Laser-Arc Directed Energy Deposition of 2319 Aluminum Alloy. Addit. Manuf. Front. 2025, 4, 200203. [Google Scholar] [CrossRef]
- Tongov, E.; Petkov, V.; Dyakova, V.; Simeonova, T.; Tongov, M. Strength Characteristics Prediction of the Metal Obtained by Wire Arc Additive Manufacturing. Machines 2025, 13, 396. [Google Scholar] [CrossRef]
- Huang, M.; Lu, Q.; Lei, Y.; Gao, J. Interpretable predictive modeling of laser cladding quality characteristics based on enhanced whale optimization algorithm-light gradient boosting machine and Shapley additive explanation. J. Laser Appl. 2025, 37, 022031. [Google Scholar] [CrossRef]
- Taghian, M.; Mazzucato, F.; Valente, A.; Saboori, A.; Iuliano, L. Optimizing CoCrNi Single Track Geometry in Directed Energy Deposition: A Regression-Based Approach to Laser Power and Scan Speed Control. Procedia CIRP 2025, 134, 1035–1040. [Google Scholar] [CrossRef]
- Zheng, F.; Xie, L.; Bai, Q.; Zhu, Y.; Yin, M.; Zhang, Y.; Niu, K. Semi-supervised learning for laser directed energy deposition monitoring via co-axial dynamic imaging. Addit. Manuf. 2025, 97, 104628. [Google Scholar] [CrossRef]
- Kalami, H.; Urbanic, J. Exploration of hardness variations for additive manufactured thin-walled components built by multi-axis tool paths. Int. J. Adv. Manuf. Technol. 2021, 113, 2209–2226. [Google Scholar] [CrossRef]
- Saqib, S.M.; Urbanic, R.J. Investigation of the Transient Characteristics for Laser Cladding Beads Using 420 Stainless Steel Powder. J. Manuf. Sci. Eng 2017, 139, 081009. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Zhang, T.; Wen, T.; Feng, X.; Yin, L. Effects of Location on the Microstructure and Mechanical Properties of Cu-8Al-2Ni-2Fe-2Mn Alloy Produced Through Wire Arc Additive Manufacturing. J. Mater. Eng. Perform. 2020, 29, 4733–4744. [Google Scholar] [CrossRef]
- Ajithkumar, S.; Arulmurugan, B. Investigation of Single and Double Pulse Techniques on Microstructure and Mechanical Anisotropy of Inconel 686 Component Fabricated by Wire Arc Directed Energy Deposition. Met. Mater. Int. 2025, 31, 1648–1673. [Google Scholar] [CrossRef]
Keyword Set 1 (DED Processes) | Keyword Set 2 (Machine Learning Methods) |
---|---|
Direct Energy Deposition | Clustering |
Beads Clad | Machine Learning |
Wire Arc | Machine-Learning |
Laser Cladding | Unsupervised |
Metal Deposition | Supervised |
Directed Energy Deposition | Artificial Intelligence |
Data-Driven | |
Reinforcement Learning | |
Decision Tree | |
Regression | |
Neural Network | |
Principal Component Analysis | |
Random Forest | |
K-means | |
Support Vector Machine | |
K-nearest | |
Fuzzy | |
Deep Learning |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [20,21,24,25,27] |
Defect detection and classification | [23] |
Real-time monitoring and control | [22,28,30] |
Regression modeling | [26,29] |
Topic | Papers (Reference Numbers) |
---|---|
Defect detection and classification | [31] |
Process parameter optimization | [32] |
Topic | Papers (Reference Numbers) |
---|---|
Real-time monitoring and control | [33] |
Defect detection and classification | [34] |
Topic | Papers (Reference Numbers) |
---|---|
Deep learning applications | [35] |
Melt pool and bead geometry prediction | [36] |
Surface property and microstructure prediction | [37,38] |
Process parameter optimization | [38] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [39] |
Melt pool and bead geometry prediction | [41] |
Real-time monitoring and control | [42] |
Deep learning applications | [43] |
Surface property and microstructure prediction | [40,44,45,46] |
Physics-informed ML models | [47] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [48,58,59,62] |
Deep learning applications | [48,49,50] |
Defect detection and classification | [54,60], |
Fuzzy logic-based applications | [51,52] |
Melt pool and bead geometry prediction | [53,56] |
Real-time monitoring and control | [55,65] |
Regression modeling | [58,59,61,62,63,64,66,67,68] |
Reinforcement learning applications | [69] |
Topic | Papers (Reference Numbers) |
---|---|
Fuzzy logic-based applications | [70,71,72] |
Unsupervised learning and clustering | [75] |
Defect detection and classification | [73,74,81,90] |
Deep learning applications | [76,85,87,94,95,97,102] |
Real-time monitoring and control | [76,80,82,83,88,96,97] |
Process parameter optimization | [92,93] |
Surface property and microstructure prediction | [73,86,91,92,101] |
Regression modeling | [101,102] |
Melt pool and bead geometry prediction | [78,83,88,96] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [111,113,114,115,123,132] |
Real-time monitoring and control | [103,105,117,155,160,161] |
Defect detection and classification | [120,124,125,126,127,137,138,140,160,161] |
Melt pool and bead geometry prediction | [112,118,128,136,156,159] |
Surface property and microstructure prediction | [104,137,138,139,143] |
Deep learning applications | [122,135,155,156,157,159,160,161,162,163,164,165] |
Fuzzy logic-based applications | [106,107,108,109,110] |
Regression modeling | [111,112,113,114,115,116,118,119,120,129,130] |
Physics-informed ML models | [153,154] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [166,167,170,171,173,188,214,226,227,228,230] |
Real-time monitoring and control | [169,177,179,195,220,221,229,230] |
Defect detection and classification | [182,185,198,201,207,208,222,223,224,225] |
Melt pool and bead geometry prediction | [157,186,187,191,195,210,225] |
Surface property and microstructure prediction | [181,196,197,205,209] |
Deep learning applications | [157,186,202,204,212,213,215,216,218,219,221,222,223,224,225,230] |
Fuzzy logic-based applications | [166,167] |
Reinforcement learning applications | [227,228] |
Regression modeling | [168,172,174,175,176,181,184,189,190,192,199,200,203] |
Physics-informed ML models | [206,217] |
Unsupervised learning and clustering | [180] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [260,261,288,319,320,321,322,330,332,334,335,336,337,338,339,340] |
Real-time monitoring and control | [234,235,236,265,266,267,268,269,270,271,273,301,309] |
Defect detection and classification | [236,252,264,265,266,267,268,270,273,308,309,310] |
Melt pool and bead geometry prediction | [258,259,274,275,276,277,279,280,281,282,283,304,314,318] |
Surface property and microstructure prediction | [286,287,289,290,291,292,293,294,295,305,306] |
Deep learning applications | [246,247,248,249,250,251,252,253,297,308,309,310,312,313,314,315,316,317] |
Fuzzy logic-based applications | [237,238,239,240] |
Reinforcement learning applications | [244,332,333] |
Regression modeling | [319,320,321,322,323,324,325,326,327,328,329,330,331] |
Physics-informed ML models | [282,296,298,299,301] |
Unsupervised learning and clustering | [233,236,241,242] |
Topic | Papers (Reference Numbers) |
---|---|
Process parameter optimization | [334,338,339,340,341,342,343,368,369] |
Real-time monitoring and control | [347,348,349,350,351,352,385] |
Defect detection and classification | [345,348,349,351,353,362,363,364,365,376,377,378] |
Melt pool and bead geometry prediction | [335,337,355,356,357,358,359,360,361,375,380] |
Surface property and microstructure prediction | [369,370,371,372,373,374,378,383,384] |
Deep learning applications | [337,347,348,349,350,351,352,360,375,376,377] |
Fuzzy logic-based applications | [346] |
Regression modeling | [334,338,339,340,341,366,380,381,382,385,386] |
Physics-informed ML models | [354,359,378,379] |
Unsupervised learning and clustering | [344,345] |
Performance | Functionality | Design and Validation Considerations | |
---|---|---|---|
System | Durability | Data collection and analytics (real-time metrics) | Low-to-medium-volume systems design |
Repeatability | Production planning and scheduling and adaptation to changes | Discrete event-/agent-based simulation tools (incl. heat management) | |
Cycle time/throughput | |||
Stability | |||
Task complexity, line balancing, etc. | |||
Process | Parameter optimization | Component variety, shape, surface, overhangs | Real-time process–part data collection |
Tool path optimization | Repair, new features, etc. | DED-AM specific performance metrics | |
Durability, repeatability | Functionally graded materials (intra-/interlayer) | ||
Real-time monitoring, control | |||
Thermo-mechanical behavior | Integrated machining | ||
Prediction Tools | Adaptable, extensible, rapid | Quasi-static strength and impact response | High-fidelity prediction tools |
Geometry and mechanical properties | Induced residual stresses | Adaptive control | |
Real-time validation | Wear characteristics | DED-AM specific in-process metrics | |
Automatic parameter adjustment | Bead, layer, and shape geometry | ||
Design Tools | Design for DED-AM CAD and CAM | Data-driven design optimization (component + operations) | Automated geometry adjustments (e.g., topology optimization) |
Modified materials datasets | |||
ML-supported design tools | |||
Personnel | Training: product and process design | Training: tool paths, planning | Inspection and analysis tools |
DED system interaction types | Mechanical characterization | ||
Calibration strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazireh, S.; Mirazimzadeh, S.E.; Urbanic, J. A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study. Metals 2025, 15, 966. https://doi.org/10.3390/met15090966
Pazireh S, Mirazimzadeh SE, Urbanic J. A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study. Metals. 2025; 15(9):966. https://doi.org/10.3390/met15090966
Chicago/Turabian StylePazireh, Syamak, Seyedeh Elnaz Mirazimzadeh, and Jill Urbanic. 2025. "A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study" Metals 15, no. 9: 966. https://doi.org/10.3390/met15090966
APA StylePazireh, S., Mirazimzadeh, S. E., & Urbanic, J. (2025). A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study. Metals, 15(9), 966. https://doi.org/10.3390/met15090966