Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Analysis
2.2. Experiment Procedures
2.2.1. Sulfuric Acid-Hydrogen Peroxide Leaching
2.2.2. Selective Separation of Mn
2.2.3. Selective Separation of Ni, Co, and Li
2.3. Analysis and Characterization
3. Results and Discussion
3.1. Sulfuric Acid-Hydrogen Peroxide Leaching
3.2. Selective Separation of Mn
3.3. Selective Recovery of Ni and Co
3.4. Li Enrichment and Recovery
3.5. Flowsheet Development
4. Conclusions
- (1)
- The leaching of valuable metals was achieved by using H2SO4 and H2O2, and leaching efficiencies of Li, Ni, Co, and Mn were reached 96.58%, 96.13%, 95.22%, and 94.24%, respectively, under optimal conditions which were C(H2SO4) of 3.5 mol/L, V(H2O2) of 0.8% (v/v), L/S of 10:1, temperature of 60 °C, and time of 60 min.
- (2)
- Directional precipitation of Mn can be realized by using KMnO4, and precipitation efficiency of Mn as MnO2 via redox control was achieved 98.47% at a pH of 2 and with the Kp/Kt ratio of 1:1.
- (3)
- Stepwise separation of Ni and Co can be realized by using the extractant Cyanex272, as well as Ni and Co were extracted 98.68% and 89.99% at a pH of 2.5 and with an O/A of 1:5 (the extraction O/A of Ni was 1:1).
- (4)
- Selective separation of Li was achieved by using the extractant HBL121, and over 95.00% of Li can be extracted at pH 13.5 with an O/A ratio of 1:1. The Li concentration was enriched from 1.60 g/L to 11.44 g/L.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, K.; Gu, X.; Wang, Y.; Qin, W.; Han, J. A green strategy for recycling cathode materials from spent lithium-ion batteries using glutathione. Green Chem. 2023, 25, 4362–4374. [Google Scholar] [CrossRef]
- Palacín, M.R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292. [Google Scholar] [CrossRef]
- Zhang, Y.; Ning, P.; Yang, X.; Dong, P.; Lin, Y.; Meng, Q. New progress in research on recycling technology of waste ternary lithium-ion batteries. Chem. Ind. Eng. Prog. 2020, 39, 2828–2840. [Google Scholar] [CrossRef]
- Yang, K.; Xiong, Z.Y.; Liu, Z.L.; Xu, Z.F.; Wang, R.X.; Nie, H.P. Study on the recovery of Li by reduction roasting of used ternary lithium-ion battery cathode. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 3367–3378. [Google Scholar] [CrossRef]
- Hu, G.C.; Hu, N.H.; Wu, J.J.; Ma, W.H. Research progress in recovery of valuable metals in cathode materials for lithium-ion batteries. Chin. J. Nonferrous Met. 2021, 31, 3320–3343. [Google Scholar] [CrossRef]
- Natarajan, S.; Aravindan, V. Burgeoning Prospects of Spent Lithium-Ion Batteries in Multifarious Applications. Adv. Energy Mater. 2018, 8, 1802303. [Google Scholar] [CrossRef]
- Zhong, X.H.; Chen, L.L.; Han, J.W.; Liu, W.; Jiao, F.; Qin, W.Q. Overview of present situation and technologies for the recovery of spent lithium-ionbatteries. Chin. J. Eng. 2021, 473, 161–169. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W.; Yang, C.; Ling, H. Extraction of Valuable Metals from Spent Li-Ion Batteries Combining Reduction Smelting and Chlorination. Metals 2025, 15, 732. [Google Scholar] [CrossRef]
- Batkal, A.; Kamunur, K.; Mussapyrova, L.; Milikhat, B.; Nadirov, R. Optimized Ammonia Leaching and Energy-Efficient Stripping for Lithium and Cobalt Recovery from Spent LiCoO2 Cathodes. Metals 2025, 15, 690. [Google Scholar] [CrossRef]
- Wang, D.B.; Liang, J.L.; Deng, X.C. Research status of extraction and recovery of lithium resources and preparation process of lithium. Inorg. Chem. Ind. 2020, 52, 8–12. [Google Scholar] [CrossRef]
- Wang, Y.B.; Guo, Y.W.; Sun, C.; Ruan, J.L.; Zhang, J.Q. Discussion on environmental risk analysis and management counter measures of waste power batteries recovery in China. J. Environ. Eng. Technol. 2019, 9, 207–212. [Google Scholar] [CrossRef]
- Chen, L. Research on Resourceful Recycling of Nonferrous Metals in Waste Lithium-Ion Batteries. Master’s Thesis, Central South University, Changsha, China, 2011. Available online: https://d.wanfangdata.com.cn/thesis/Y1916201 (accessed on 16 March 2012).
- Wang, Z.Y.; Wang, B.X.; Yuan, W.L.; Yu, X.; Zhao, Y.; Song, Y.H.; Ma, H.Z. Experimental study on the recovery of nickel-cobalt-manganese from waste lithium-ion batteries. Hydrometall. China 2022, 41, 427–432. [Google Scholar] [CrossRef]
- Xu, Z.H.; Liu, Z.D.; Wang, S.B.; Lu, Z.G.; Zhang, Z.T.; Wang, H.; Jiang, F. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries. J. China Univ. Min. Technol. 2022, 51, 454–465. [Google Scholar] [CrossRef]
- Xuebin, P. Research on New Process of Wet Recovery of Valuable Metals from Waste Nickel-Cobalt-Manganese Ternary Lithium Battery Cathode Materials. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2023. [Google Scholar]
- Gu, K.Q.; Tan, W.Q.; Han, J.W. Reduction leaching of valuable metals from spent cathode materials of lithium batteries using orange peel. Chin. J. Nonferrous Met. 2024, 34, 561–572. [Google Scholar] [CrossRef]
- Dai, M.; Zhang, Y.; Zhang, K.; Zhao, Y.B. Recovery of Cobalt, Nickel and Lithium From Spent Lithium Ion Battery Cathode Material by Solvent Extraction--Precipitation. Hydrometall. China 2019, 38, 276–282. [Google Scholar] [CrossRef]
- Li, C.; Dai, G.; Liu, R.; Wang, C.; Wang, S.; Ju, Y.; Jiang, H.; Jiao, S.; Duan, C. Study on Separation and Recovery of Nickel Cobalt Manganese Lithium from Waste Ternary Lithium Ion Batteries. Sep. Purif. Technol. 2023, 306, 122559. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, F.; Chen, H.; Chen, Z.; Liao, C.; Chen, F.; Guo, Y. Cleaner Process for the Selective Extraction of Lithium from Spent Aluminum Electrolyte Slag. ACS Sustain. Chem. Eng. 2024, 12, 11797–11808. [Google Scholar] [CrossRef]
- Jiang, L.; Zhan, L.; Zhang, Q.Z. Separation and recovery of lithium Co Ni manganese from acidic leachate of cathode active materials of used ternary batteries. Chin. J. Nonferrous Met. 2020, 30, 2684–2694. [Google Scholar] [CrossRef]
- Zhong, X.H.; Jiao, F.; Liu, T.; Tan, W.Q. Overview of recovery technology for spent Li-ion battery. Battery Bimon. 2018, 48, 63–67. [Google Scholar] [CrossRef]
- Tang, C.; Shan, W.; Zheng, Y.; Zhang, L.; Liu, Y.; Liao, B.; Chen, H.; Hou, X. Recovery of Li/Co from spent lithium-ion battery through iron-air batteries. Chem. Eng. J. 2024, 502, 157578. [Google Scholar] [CrossRef]
- Dong, B.; Tian, Q.H.; Xu, Z.P.; Li, D.; Wang, Q.A.; Guo, X.Y. Progress of research on clean extraction of Ni Co lithium resources for new energy strategic metals. Mater. Rep. 2023, 37, 127–141. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Q.; Li, L.J.; Shen, Z.H. Study on the Separation of Manganese from a Low-grade Manganese Carbonate Ore in Guizhou. Nonferrous Met. 2020, 3, 58–66. [Google Scholar] [CrossRef]
- Xu, Z.G.; Ji, S.J.; Wang, Z.H.; Qian, Z.D.; Wang, F.; Zhou, T. Research status of nickel-cobalt extraction and separation technology in solution. Hydrometall. China 2018, 37, 342–348. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, F.; Chen, F.; Chen, Z.; Zeng, H.; Zhang, T.; Shen, C. Recycling of Valuable Metals from the Priority Lithium Extraction Residue Obtained through Hydrogen Reduction of Spent Lithium Batteries. Batteries 2024, 10, 28. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, X.; Bian, H.; Ma, J.; Zhang, Z. Selective lithium recycling and regeneration from spent lithium-ion batteries via a sulfur roasting method. Sep. Purif. Technol. 2025, 360, 131236. [Google Scholar] [CrossRef]
- Lei, S.; Ding, H.; Yuan, S.; Wen, G.; Han, C.; Dong, Z.; Wang, W. Prioritized recovery of lithium from spent lithium-ion batteries by synergistic roasting with Na2SO4: Precise regulation. Sep. Purif. Technol. 2025, 360, 131128. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Liu, S.; Shi, Y.; Wu, Y.; Li, J.; Zhang, H.; Xie, Y.; Qi, T. Selective recovery of lithium from used lithium-ion batteries spent via grain boundary reconstruction reaction. Sep. Purif. Technol. 2025, 356, 129726. [Google Scholar] [CrossRef]
- Peng, Z.; Zhu, Z.; Li, J.; Lu, Q.; Wang, M. High selectivity and High-efficiency extraction lithium from spent lithium-ion batteries by solvothermal method with ammonium chloride. Sep. Purif. Technol. 2025, 360, 131298. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, J.; Ou, L. A comprehensive review on the separation and purification of valuable metals from the leachate of spent lithium-ion batteries. Sep. Purif. Technol. 2025, 360, 130847. [Google Scholar] [CrossRef]
- Shuai, J.; Liu, W.; Rohani, S.; Wang, Z.; He, M.; Ding, C.; Lv, X. Efficient extraction and separation of valuable elements from spent lithium-ion batteries by leaching and solvent extraction: A review. Chem. Eng. J. 2025, 503, 158114. [Google Scholar] [CrossRef]
- Zou, Y.; Chernyaev, A.; Seisko, S.; Sainio, J.; Lundström, M. Removal of iron and aluminum from hydrometallurgical NMC-LFP recycling process through precipitation. Miner. Eng. 2024, 218, 109037. [Google Scholar] [CrossRef]
Element | Li | Ni | Co | Mn | Al | Fe | Cu |
---|---|---|---|---|---|---|---|
Content | 3.54 | 10.70 | 4.41 | 18.10 | 2.07 | 0.88 | 0.92 |
Elemental Concentration (ppm) | V (mL) | pH | |||||||
---|---|---|---|---|---|---|---|---|---|
Al | Fe | Cu | Li | Ni | Co | Mn | |||
LA1 | 522 | 445 | 537 | 2318 | 6973 | 2839 | 11,560 | 295 | 0.12 |
LA2 | 515 | 2403 | 43 | 2084 | 6213 | 2530 | 10,210 | 328 | 0.12 |
LA3 | 45 | 133 | 42 | 1754 | 5461 | 2302 | 10,100 | 364 | 3.50 |
Elemental Concentration (ppm) | V (mL) | pH | ||||
---|---|---|---|---|---|---|
Li | Ni | Co | Mn | |||
LA3 | 1754 | 5461 | 2302 | 10,100 | 364 | 2.00 |
LA4 | 1752 | 5450 | 1879 | 357 | 370 | 2.50 |
Element | Li | Ni | Co | Mn | Al | Fe | Cu |
---|---|---|---|---|---|---|---|
Content | 0.01 | 0.59 | 2.51 | 54.53 | 0.00 | 1.14 | 0.28 |
Elemental Concentration (ppm) | pH | ||||
---|---|---|---|---|---|
Li | Ni | Co | Mn | ||
LA4 | 1752 | 5450 | 1879 | 357 | 2.5 |
LA5 | 1750 | 5149 | 25.2 | 46.7 | 2.5 |
LA6 | 1600 | 52.1 | 5.3 | 2.6 | 2.5 |
Elemental Concentration (ppm) | pH | ||||
---|---|---|---|---|---|
Li | Ni | Co | Mn | ||
LA6 | 1600 | 52.1 | 5.3 | 2.6 | 2.5 |
LA7 | 82.7 | <1 | <1 | <1 | 13.5 |
LA8 | 11,443 | <1 | <1 | <1 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, F.; Liao, C.; Zhang, T.; Chen, F.; Wang, H.; Gao, Y. Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery. Metals 2025, 15, 948. https://doi.org/10.3390/met15090948
Zhang J, Liu F, Liao C, Zhang T, Chen F, Wang H, Gao Y. Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery. Metals. 2025; 15(9):948. https://doi.org/10.3390/met15090948
Chicago/Turabian StyleZhang, Jiawei, Fupeng Liu, Chunfa Liao, Tao Zhang, Feixiong Chen, Hao Wang, and Yuxin Gao. 2025. "Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery" Metals 15, no. 9: 948. https://doi.org/10.3390/met15090948
APA StyleZhang, J., Liu, F., Liao, C., Zhang, T., Chen, F., Wang, H., & Gao, Y. (2025). Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery. Metals, 15(9), 948. https://doi.org/10.3390/met15090948