Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector
Abstract
1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Micro-Flotation Experiments
2.3. Contact Angle Measurements
2.4. FTIR Spectroscopy
2.5. Adsorption Capacity Measurements
2.6. XPS Analysis
3. Results and Discussion
3.1. Micro-Flotation Performance
3.1.1. Single Mineral Flotation Experiment
3.1.2. Artificially Mixed Ore Flotation Experiments
3.2. Surface Wettability Analysis
3.3. FTIR Spectroscopic Analysis
3.4. Surface-Adsorption Analysis
3.5. XPS Analysis
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ling, H.; Malfliet, A.; Blanpain, B.; Guo, M. A review of the technologies for antimony recovery from refractory ores and metallurgical residues. Miner. Process. Extr. Metall. Rev. 2024, 45, 200–224. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wen, S.; Cao, Q. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep. Purif. Technol. 2017, 178, 193–199. [Google Scholar] [CrossRef]
- Anderson, C.G. The metallurgy of antimony. Geochemistry 2012, 72, 3–8. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, S.; Feng, Q.; Huang, G. Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption. J. Mol. Liq. 2021, 331, 115802. [Google Scholar] [CrossRef]
- Li, F.; Huang, Y.; Zhang, Y.; Wang, M.; Chen, L.; Jia, Y. Flotation and adsorption mechanism studies of antimony sulfide with 5-heptyl-1,3,4-oxadiazole-2-thione as a collector. Miner. Eng. 2021, 172, 107164. [Google Scholar] [CrossRef]
- Dembele, S.; Akcil, A.; Panda, S. Investigation of the characteristics of stibnite (Sb2S3) flotation tailings and extraction of critical metals (Sb and As): Optimization and scale-up. Miner. Eng. 2024, 216, 108883. [Google Scholar] [CrossRef]
- Segura-Salazar, J.; Brito-Parada, P.R. Stibnite froth flotation: A critical review. Miner. Eng. 2021, 163, 106713. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Dong, F.; Du, M.; Fu, K. Research Progress and Prospect of Antimony Oxide Ore Beneficiation. Met. MINE 2021, 21–27. [Google Scholar] [CrossRef]
- Qin, X.; Deng, J.; Lai, H.; Zhang, X. Beneficiation of antimony oxide ore: A review. Russ. J. Non-Ferr. Met. 2017, 58, 321–329. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, Y.; Liu, Z.; Zheng, X.; Wang, Y.; Liu, Y. A Novel Pulsation Reflux Classifier Used for Enhanced Preconcentration Efficiency of Antimony Oxide Ore. Minerals 2025, 15, 605. [Google Scholar] [CrossRef]
- Xiao, L.; Liao, P.; Hu, W. Effect of physico-chemical characteristics of surfactant emulsion on antimony oxide flotation. Colloids Surf. 1987, 26, 273–289. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yu, S.; Yu, S.; Yu, F. Flotation mechanism of cervantite with dodecylamine. J. Univ. Sci. Technol. Beijing 2014, 36, 730–735. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yu, S.; Yu, S.; Yu, F. Flotation behavior and mechanism of cervantite with sodium dodecyl sulfate. J. Cent. South Univ. (Sci. Technol.) 2013, 44, 3955–3962. [Google Scholar]
- Deng, Z.; Guo, C. Influence of Mn2+ on the flotation of fine antimony oxide ores. Min. Metall. Eng. 1987, 7, 36–39. [Google Scholar]
- Miao, Y.; Feng, Q.; Wen, S. Experimental and MD study on the effect of SDS/OHA mixed collector co-adsorption on cassiterite flotation. Sep. Purif. Technol. 2024, 339, 126635. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, J.; Wen, S.; Li, C.; Liu, J. Synergistic effect of dodecyl sulfonate on apatite flotation with fatty acid collector. Sep. Sci. Technol. 2016, 51, 1389–1396. [Google Scholar] [CrossRef]
- Luo, X.; Lin, Q.; Wen, S.; Wang, Y.; Lai, H.; Qi, L.; Wu, X.; Zhou, Y.; Song, Z. Effect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Configuration of Dodecylamine at the Gas-Liquid Interface. Langmuir 2021, 37, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Luo, X.; Wen, S.; Jia, L.; Jiang, W.; Song, Z.; Wang, Y. Flotation separation of hematite from quartz with dodecyl trimethyl ammonium chloride and sodium dodecyl sulfonate collector. J. Environ. Chem. Eng. 2024, 12, 113481. [Google Scholar] [CrossRef]
- Luo, X.; Jia, L.; Yang, S.; Guo, X.; Liu, X.; Wang, Y. Enhanced efficacy of sodium dodecyl sulfonate in the reverse flotation of hematite with dodecylamine as the collector. Powder Technol. 2025, 450, 120459. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, H.; Tang, X.; Zhou, H.; Xie, T.; Shen, L.; Guo, L.; Luo, X. Application of a novel mixed anionic/cationic collector in the selective flotation separation of lepidolite and quartz. Colloids Surf. A Physicochem. Eng. Asp. 2024, 701, 134919. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, C.; Jiao, F.; Wei, Q. Garnet in the flotation of fine-grained lepidolite: Strengthening role and action mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2025, 716, 136730. [Google Scholar] [CrossRef]
- Farag, R.M.; El-Midany, A.A. How does the SDS addition in talc grinding affect its floatability? Part. Sci. Technol. 2022, 40, 427–433. [Google Scholar] [CrossRef]
- Lu, F.; Liu, L.; Kong, C.; Zhao, H. Enhancing coal slime processing: Investigating the efficacy of sodium dodecyl sulfonate in the adsorption on kaolinite surfaces. Asia-Pac. J. Chem. Eng. 2024, 19, e3074. [Google Scholar] [CrossRef]
- Lai, J.; Zhao, F.; Xia, Z.; Su, Y.; Zhang, C.; Tian, Y.; Wang, G.; Qin, Z. Well log prediction of total organic carbon: A comprehensive review. Earth-Sci. Rev. 2024, 258, 104913. [Google Scholar] [CrossRef]
- Emami, H.; Ayatizadeh Tanha, A.; Khaksar Manshad, A.; Mohammadi, A.H. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height. ACS Omega 2022, 7, 14832–14847. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Ding, K.; Yan, H.; Liu, Y.; Wu, H.; Zhao, D.; Qiu, T. Electrochemistry and DFT study of galvanic interaction on the surface of monoclinic pyrrhotite (001) and galena (100). Int. J. Min. Sci. Technol. 2024, 34, 1151–1162. [Google Scholar] [CrossRef]
- Wang, L. Drainage and rupture of thin foam films in the presence of ionic and non-ionic surfactants. Int. J. Miner. Process. 2012, 102, 58–68. [Google Scholar] [CrossRef]
- Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta 2005, 548, 95–100. [Google Scholar] [CrossRef]
- Jańczuk, B.; González-Martín, M.L.; Bruque, J.M.; Dorado-Calasanz, C. A study of the adsorption of sodium dodecyl sulphonate at the solution-air interface. Colloids Surf. A Physicochem. Eng. Asp. 1998, 137, 15–24. [Google Scholar] [CrossRef]
- Bhambhani, T.; Farinato, R.S.; Somasundaran, P.; Nagaraj, D.R. Effect of platy gangue minerals in sulfide flotation: Part 2: Mechanisms. Miner. Eng. 2023, 201, 108180. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Kirk, S.; Strobel, M.; Lyons, C.S.; Janis, S. A statistical comparison of contact angle measurement methods. J. Adhes. Sci. Technol. 2019, 33, 1758–1769. [Google Scholar] [CrossRef]
- Sajjad Tahooni, B.; Hadi, A.; Amir, A. A Review of the Mineral Contact Angle Measurements and Applications in the Froth Flotation Process: Techniques and Influential Parameters, Part I. Miner. Process. Extr. Metall. Rev. 2024, 1–18. [Google Scholar] [CrossRef]
- Martínez-Luévanos, A.; Uribe-Salas, A.; López-Valdivieso, A. Mechanism of adsorption of sodium dodecylsulfonate on celestite and calcite. Miner. Eng. 1999, 12, 919–936. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, B.; Yan, H.; Zhang, L.; Zhong, C.; Wang, T.; Wang, H.; Xu, L. Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 127987. [Google Scholar] [CrossRef]
- Freek van der, M. Near-infrared laboratory spectroscopy of mineral chemistry: A review. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 71–78. [Google Scholar] [CrossRef]
- Gong, X.; Yao, J.; Yang, B.; Fu, Y.; Wang, Y.; Yin, W. Selective flotation of brucite from calcite using HEDP-4Na as an inhibitor in a SDS system. J. Ind. Eng. Chem. 2023, 125, 390–401. [Google Scholar] [CrossRef]
- Garbassi, F. XPS and AES study of antimony oxides. Surf. Interface Anal. 1980, 2, 165–169. [Google Scholar] [CrossRef]
- Ghobeira, R.; Esbah Tabaei, P.S.; Morent, R.; De Geyter, N. Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: A review. Surf. Interfaces 2022, 31, 102087. [Google Scholar] [CrossRef]
- Yang, W.; Qiu, X.; Liu, C.; Zhao, G.; Yan, H.; He, X.; Ding, K.; Jiao, Q.; Qiu, T. Flotation separation of chalcopyrite and molybdenite in advanced oxidation systems: Experimental and mechanism study. Powder Technol. 2025, 457, 120876. [Google Scholar] [CrossRef]
- Josianne, L.; Federico, G.; Claudia, L.B.; Gregory, S.P.; Daria, C.B. Experimental methods in chemical engineering: X-ray photoelectron spectroscopy-XPS. Can. J. Chem. Eng. 2019, 97, 2588–2593. [Google Scholar] [CrossRef]
- Tang, Y. Application of φ800*600 centrifugal concentrator. T. Nonferr. Metal Soc. 1991, 5, 24–26. [Google Scholar]
Minerals | Chemical Composition (wt.%) | |||
---|---|---|---|---|
Sb | SiO2 | CaCO3 | Al2O3 | |
Quartz | - | 99.78 | 0.10 | 0.06 |
Antimonate mineral | 71.65% | 0.90 | 0.23 | 0.14 |
Phase | Antimonate | Stibnite | Antimony Bloom |
---|---|---|---|
Content, wt.% | 98.46 | 0.49 | 1.05 |
Sample | Collector | Relative Atomic Concentration (%) | ||||
---|---|---|---|---|---|---|
C | O | Si | Sb | S | ||
Antimonate Mineral | - | 12.59 | 12.88 | - | 74.53 | - |
SDS | 14.9 | 13.7 | - | 71.14 | 0.26 | |
Quartz | - | 7.47 | 80.55 | 11.98 | - | - |
SDS | 8.23 | 80.62 | 11.15 | - | - |
Reagent | PH | Sb Recovery | Quartz Recovery | Literature |
---|---|---|---|---|
SDS | 8 | 90.25% | 9.46% | This work |
CuSO4, Thiourea, and Hydroxamic acid | 4 | 87.80% | 37.00% | Nonferrous Metals (Mineral Processing Section), (1991) 24–26. [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Wang, P.; Qi, J.; Sun, W.; Zhou, Y.; Zhao, W.; He, S.; Luo, Y.; Tang, H. Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector. Metals 2025, 15, 815. https://doi.org/10.3390/met15070815
Jiang F, Wang P, Qi J, Sun W, Zhou Y, Zhao W, He S, Luo Y, Tang H. Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector. Metals. 2025; 15(7):815. https://doi.org/10.3390/met15070815
Chicago/Turabian StyleJiang, Feng, Pengyuan Wang, Jiaxing Qi, Wei Sun, Yulin Zhou, Weishang Zhao, Shuai He, Yuanjia Luo, and Honghu Tang. 2025. "Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector" Metals 15, no. 7: 815. https://doi.org/10.3390/met15070815
APA StyleJiang, F., Wang, P., Qi, J., Sun, W., Zhou, Y., Zhao, W., He, S., Luo, Y., & Tang, H. (2025). Efficient Flotation Separation of Antimonate Minerals from Quartz Using Sodium Dodecyl Sulfonate as Collector. Metals, 15(7), 815. https://doi.org/10.3390/met15070815