Simulation and Optimization Methods in Machining and Structure/Material Design
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
List of Contributions
- Li, W.; Luo, Z.; Sun, Y.; Liu, X. Effect of Tool Speed on Microstructure Evolution and Mechanical Properties of Friction Stir Welded Joints of Al-Mg-Si Alloy with High Cu Content. Metals 2024, 14, 758. https://doi.org/10.3390/met14070758.
- He, W.; Yang, B.; Zhang, X.; Li, M.; Sun, S.; Wang, B.; Ma, Q. Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process. Metals 2024, 14, 561. https://doi.org/10.3390/met14050561.
- Xiao, Z.; Wang, H.; Liu, J.; Jiang, J.; Yu, L.; Zhang, Y. Study on Deformation Behavior and Mechanical Properties of 42CrMo High-Strength Steel with Multi-Station Warm Upsetting. Metals 2024, 14, 135. https://doi.org/10.3390/met14020135.
- Jiang, J.; Liang, C.; Chen, Y.; Wang, Y.; Cui, H.; Xu, J.; Zhou, F.; Wang, P.; Zhang, D.Z. The Influence of Process Parameters on the Density, Microstructure, and Mechanical Properties of TA15 Titanium Alloy Fabricated by Selective Laser Melting. Metals 2025, 15, 233. https://doi.org/10.3390/met15030233.
- Luo, Z.; Sun, Y.; Li, W.; He, J.; Luo, G.; Liu, H. Evolution of Microstructures, Texture and Mechanical Properties of Al-Mg-Si-Cu Alloy under Different Welding Speeds during Friction Stir Welding. Metals 2023, 13, 1120. https://doi.org/10.3390/met13061120.
- Liu, H.; Meurer, M.; Bergs, T. Modeling and Monitoring of the Tool Temperature During Continuous and Interrupted Turning with Cutting Fluid. Metals 2024, 14, 1292. https://doi.org/10.3390/met14111292.
- Storchak, M.; Hlembotska, L.; Melnyk, O.; Baranivska, N. Interaction of Mechanical Characteristics in Workpiece Subsurface Layers with Drilling Process Energy Characteristics. Metals 2024, 14, 683. https://doi.org/10.3390/met14060683.
- Wei, D.; Chen, M.; Zhang, C.; Ai, X.; Xie, Z. Simulation of Localized Stress Impact on Solidification Pattern during Plasma Cladding of WC Particles in Nickel-Based Alloys by Phase-Field Method. Metals 2024, 14, 1022. https://doi.org/10.3390/met14091022.
- Zhang, W.; Ma, Y. Study of Size Effect on Ni60Nb40 Amorphous Particles and Thin Films by Molecular Dynamic Simula-tions. Metals 2024, 14, 835. https://doi.org/10.3390/met14070835.
- Yu, S.; Hu, L.; Yang, X.; Ji, X. Finite Element Modeling of Acoustic Nonlinearity Derived from Plastic Deformation of 35CrMoA Steel. Metals 2025, 15, 343. https://doi.org/10.3390/met15040343.
- Plewa, J.; Płońska, M.; Junak, G. Metallic Metamaterials with Auxetic Properties: Re-Entrant Structures. Metals 2024, 14, 1272. https://doi.org/10.3390/met14111272.
- Tang, P.; Pang, R.; Chen, H.; Ren, Y.; Tan, J. Optimization of Microstructure and Mechanical Properties in Al-Zn-Mg-Cu Alloys Through Multiple Remelting and Heat Treatment Cycles. Metals 2025, 15, 234. https://doi.org/10.3390/met15030234.
- Meng, F.; Wang, L.; Ming, W.; Zhang, H. Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm. Metals 2023, 13, 1222. https://doi.org/10.3390/met13071222.
- Meng, X.; Sun, Y.; He, J.; Li, W.; Zhou, Z. Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle. Metals 2023, 13, 705. https://doi.org/10.3390/met13040705.
- Li, X.; Jiang, Q.; Long, Y.; Chen, Z.; Zhao, W.; Ming, W.; Cao, Y.; Ma, J. Design Optimization of Chute Structure Based on E-SVR Surrogate Model. Metals 2023, 13, 635. https://doi.org/10.3390/met13030635.
- Chen, Y.; Zhang, S.; Hu, S.; Zhao, Y.; Zhang, G.; Cao, Y.; Ming, W. Study of Heat Transfer Strategy of Metal Heat-ing/Conduction Plates for Energy Efficiency of Large-Sized Automotive Glass Molding Process. Metals 2023, 13, 1218. https://doi.org/10.3390/met13071218.
- Sarfarazi, S.; Mascolo, I.; Modano, M.; Guarracino, F. Application of Artificial Intelligence to Support Design and Analysis of Steel Structures. Metals 2025, 15, 408. https://doi.org/10.3390/met15040408.
- Li, L.; Sun, S.; Xing, W.; Zhang, Y.; Wu, Y.; Xu, Y.; Wang, H.; Zhang, G.; Luo, G. Progress in Simulation Modeling Based on the Finite Element Method for Electrical Discharge Machining. Metals 2024, 14, 14. https://doi.org/10.3390/met14010014.
- Chen, Y.; Hu, S.; Li, A.; Cao, Y.; Zhao, Y.; Ming, W. Parameters Optimization of Electrical Discharge Machining Process Using Swarm Intelligence: A Review. Metals 2023, 13, 839. https://doi.org/10.3390/met13050839.
- Cao, Y.; Zhang, Y.; Ming, W.; He, W.; Ma, J. Review: The Metal Additive-Manufacturing Technology of the Ultrasonic-Assisted Wire-and-Arc Additive-Manufacturing Process. Metals 2023, 13, 398. https://doi.org/10.3390/met13020398.
References
- Wang, B.; Meng, S.; Gao, B.; Wang, K.; Xu, C. Ultra-high temperature mechanical behavior and microstructural evolution of needle-punched carbon/carbon composites under time-varying thermo-mechanical coupling conditions. Compos. Struct. 2025, 365, 119192. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, H.; Li, Y.; Zhang, Z.; Wang, Y.; Huang, Q.; Cao, L.; Gao, F.; Tracy, C.L.; Ewing, R.C.; et al. Multi-stage phase transformation pathways in MAX phases. Nat. Commun. 2025, 16, 1554. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zheng, Z.; Fu, M.W. Aluminum matrix composites: Structural design and microstructure evolution in the deformation process. J. Mater. Res. Technol. 2024, 30, 3724–3754. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, C.; Ren, G.; Shen, S.; Yi, H. Laser Additive Manufacturing of Three-Dimensional Porous Structures: Structural Design, Microstructure, Mechanical Properties and Applications. J. Mater. Res Technol. 2025, 36, 3684–3725. [Google Scholar] [CrossRef]
- Zong, J.; Zhang, L.; Liang, X.; Zhang, Y.; Zhang, Y.W.; Nie, Z.; Zhao, J. Numerical simulation of plate-fin heat exchanger and design of novel turbulator structures using a multi-scale simulation approach. Int. Commun. Heat Mass Transf. 2025, 164, 108897. [Google Scholar] [CrossRef]
- Shi, G.; Hou, L.; Zhao, H. Numerical study on the seismic behaviour of high-strength steel moment-resisting frames: Multi-scale modelling and validation. Thin-Walled Struct. 2025, 208, 112807. [Google Scholar] [CrossRef]
- Yan, H.; Zeng, X.; Cui, Y.; Zou, D. Numerical and experimental study of residual stress in multi-pass laser welded 5A06 alloy ultra-thick plate. J. Mater. Res. Technol. 2024, 28, 4116–4130. [Google Scholar] [CrossRef]
- Mao, S.; Yang, B.; Liu, G.; Liu, G.; Zhang, Z. Temperature distribution and residual stress evolution at the interface of CuCrZr/316 L multi-material by laser powder bed fusion. Opt. Laser Technol. 2023, 163, 109355. [Google Scholar] [CrossRef]
- Jiang, D.; Xie, L.; Wang, L. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys. J. Mater. Res. Technol. 2023, 26, 1341–1374. [Google Scholar] [CrossRef]
- Ji, H.; Song, Q.; Liu, Z. Micro-milling machinability prediction for crystalline materials via numerical-analytical hybrid modelling and strain rate-dependent grain-scale simulation. J. Manuf. Process. 2024, 124, 972–984. [Google Scholar] [CrossRef]
- Fang, T.; Xie, L.; Niu, Y.; Hong, D.; Zhu, Y.; Wang, Z.; Zheng, X. Thermal shock cycle finite element simulation and optimization design of Yb2Si2O7-based high temperature abradable sealing coatings based on machine learning. Ceram. Int. 2025, 51, 14160–14173. [Google Scholar] [CrossRef]
- Zhou, W.; Xie, Z. Sealing rubber ring design based on machine learning algorithm combined progressive optimization method. Tribol. Int. 2025, 201, 110173. [Google Scholar] [CrossRef]
- Fang, X.; Song, Q.; Wang, X.; Li, Z.; Ma, H.; Liu, Z. An intelligent tool wear monitoring model based on knowledge-data-driven physical-informed neural network for digital twin milling. Mech. Syst. Signal Process. 2025, 232, 112736. [Google Scholar] [CrossRef]
- Zhang, S.; Dinavahi, V.; Liang, T. Towards hydrogen-powered electric aircraft: Physics-informed machine learning based multi-domain modeling and real-time digital twin emulation on FPGA. Energy 2025, 322, 135451. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Chen, Z.; Ming, W.; Cao, Y.; He, W.; Ma, J. Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification. Reliab. Eng. Syst. Saf. 2022, 224, 108539. [Google Scholar] [CrossRef]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A Systematic Review of Machine Learning Methods Applied to Fuel Cells in Performance Evaluation, Durability Prediction, and Application Monitoring. Int. J. Hydrogen Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, Z.; Wang, P.; Zhang, G. A Novel Composite Flm with Superhydrophobic Graphene for Anti-icing/deicing Via Chemical-assisted Magnetically Controllable Picosecond Laser Writing. Mater. Today Phys. 2025, 54, 101726. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Wei, S.; Hao, B.; Chang, H.; Huang, Y.; Zhang, G. Study on Plasma Behaviour, Ablation Mechanism, and Surface Morphology of CFRP by Underwater Laser-induced Plasma Micro-machining. J. Mater. Process. Technol. 2025, 338, 118757. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Zhao, M.; Su, X.; Tan, Y.; Ding, J. Customizable Anisotropic Microlattices for Additive Manufacturing: Machine Learning Accelerated Design, Mechanical Properties and Structural-property Relationships. Addit. Manuf. 2024, 89, 104248. [Google Scholar] [CrossRef]
- Arvanitis, K.; Nikolakopoulos, P.; Pavlou, D.; Farmanbar, M. Machine Learning-based Fatigue Lifetime Prediction of Structural Steels. Alex. Eng. J. 2025, 125, 55–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, W.; Li, X.; He, W. Simulation and Optimization Methods in Machining and Structure/Material Design. Metals 2025, 15, 560. https://doi.org/10.3390/met15050560
Ming W, Li X, He W. Simulation and Optimization Methods in Machining and Structure/Material Design. Metals. 2025; 15(5):560. https://doi.org/10.3390/met15050560
Chicago/Turabian StyleMing, Wuyi, Xiaoke Li, and Wenbin He. 2025. "Simulation and Optimization Methods in Machining and Structure/Material Design" Metals 15, no. 5: 560. https://doi.org/10.3390/met15050560
APA StyleMing, W., Li, X., & He, W. (2025). Simulation and Optimization Methods in Machining and Structure/Material Design. Metals, 15(5), 560. https://doi.org/10.3390/met15050560