Improved Microstructure of 316LN Stainless Steel Performed by Ultrasonic Surface Rolling
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology
3.2. Cross-Section Microstructure Analysis
3.3. Residual Stress Analysis
4. Conclusions
- (1)
- Through Taguchi experimental design, the optimal parameters for improving the microstructure of 316LN SS were determined as follows: the lathe speed was 220 rad/min, the space of rolling was 0.11 mm, the feed rate was 0.2 rad/min, and the number of rolling passes was 5. Among them, rolling passes exerted the most significant influence on the SRCS. Under these optimal parameters, the tested SRCS value was nearly 32 times higher than that achieved after conventional processing on the surface of 316LN stainless steel.
- (2)
- Dislocation slip, movement, and even the formation of deformation twins occurred during the plastic deformation under the ultrasonic surface rolling process. The microstructure exhibits an increase in subgrain boundary density and LAGBs. The combined effect of these features is beneficial in improving the properties of 316LN stainless steel.
- (3)
- When the rolling experiment parameters of the sixth group are selected (lathe speed of 140 r/min, rolling amount 0.03 mm, feed rate of 0.15 mm/r, and number of rolling passes 5), the surface residual compressive stress reaches its maximum value, approximately 1453.43 MPa. At this time, relatively speaking, not only can a relatively fast processing rate be achieved, but the maximum residual stress and a good processing effect can also be obtained.
- (4)
- The surface roughness of specimens after ultrasonic surface rolling processing (USRP) can be reduced by up to 85%, demonstrating the potential application of USRP in nuclear pipeline systems where surface roughness would otherwise accelerate corrosion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Dai, X.; Qian, H.; Yang, B.; Zhao, J. Effects of surface nanocrystallization on the oxide film formed on 316LN stainless steel in a high-temperature aqueous environment. Mater. Corros. 2022, 73, 125–133. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhu, Y.; Bai, Y.; Yang, B. Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Appl. Surf. Sci. 2019, 481, 1305–1312. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, Y.; Yang, B.; Wang, Y. Stress corrosion cracking of 316LN stainless steel with orthogonal scratches. J. Mater. Res. Technol. 2023, 24, 10040–10052. [Google Scholar] [CrossRef]
- Li, Y.; Cockings, H.; Mignanelli, P.M.; Whittaker, M.; Cockings, B.J.; Buckingham, R.; Bache, M.R. High temperature corrosion-fatigue behavior of a shot peened nickel based superalloy. Corros. Sci. 2022, 207, 110577. [Google Scholar] [CrossRef]
- Yu, L.; Saida, K.; Araki, H.; Sugita, K.; Mizuno, M.; Nishimoto, K.; Chigusa, N. Mechanism for stress relaxation behavior of the residual stress improving treatments with water jet peening and buffing. Mater. Sci. Eng. A 2020, 796, 140221. [Google Scholar] [CrossRef]
- John, M.; Ralls, A.M.; Misra, M.; Menezes, P.L. Effect of ultrasonic impact peening on stress corrosion cracking resistance of austenitic stainless-steel welds for nuclear canister applications. J. Nucl. Mater. 2023, 584, 154590. [Google Scholar] [CrossRef]
- Ming, T.; Xue, H.; Zhang, T.; Han, Y.; Peng, Q. Improving the corrosion and stress corrosion cracking resistance of 316 L stainless steel in high temperature water by water jet cavitation peening. Surf. Coat. Technol. 2022, 438, 128420. [Google Scholar] [CrossRef]
- Okimura, K.; Konno, T.; Narita, M.; Ohta, T.; Toyoda, M. Reliability of water jet peening as residual stress improvement method for alloy 600 PWSCC mitigation. In Proceedings of the 16th International Conference on Nuclear Engineering, Orlando, FL, USA, 11–15 May 2008; Volume 2008, pp. 565–570. [Google Scholar]
- Ji, W.; Zhou, R.; Vivegananthan, P.; See Wu, M.; Gao, H.; Zhou, K. Recent progress in gradient-structured metals and alloys. Prog. Mater. Sci. 2023, 140, 101194. [Google Scholar] [CrossRef]
- Lei, Y.B.; Wang, Z.B.; Zhang, B.; Luo, Z.P.; Lu, J.; Lu, K. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing. Acta Mater. 2021, 208, 116773. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, D.; Zhou, J.; Qiu, Z.; Yang, X. Enhanced corrosion resistance of laser additive manufactured 316L stainless steel by ultrasonic surface rolling process. Surf. Coat. Technol. 2023, 454, 129187. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, D.; Yao, C.; Ren, J. Effects of ultrasonic surface rolling parameters on surface integrity of TC17 alloy. J. Mater. Eng. Perform. 2019, 28, 6736–6745. [Google Scholar] [CrossRef]
- Li, G.; Qu, S.G.; Pan, Y.X.; Li, X.Q. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy. Appl. Surf. Sci. 2016, 389, 324–334. [Google Scholar] [CrossRef]
- Zhao, X.; Xue, G.; Liu, Y. Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy. Results Phys. 2017, 7, 1845–1851. [Google Scholar] [CrossRef]
- Teimouri, R.; Liu, Z.; Wang, B. Analytical modeling of surface generation in ultrasonic ball burnishing including effects of indentation pile-up/sink-in and chipping fracture. Arch. Civ. Mech. Eng. 2020, 20, 144. [Google Scholar] [CrossRef]
- Xu, X.; Liu, D.; Zhang, X.; Liu, C.; Liu, D.; Ma, A. Effects of ultrasonic surface rolling on the localized corrosion behavior of 7B50-T7751 aluminum alloy. Materials 2020, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Pape, F.; Maiss, O.; Denkena, B.; Poll, G. Enhancement of roller bearing fatigue life by innovative production processes. Ind. Lubr. Tribol. 2019, 71, 370–377. [Google Scholar] [CrossRef]
- Song, C.; Wang, H.; Sun, Z.; Wei, Z.; Yu, H.; Chen, H.; Wang, Y. Optimization of process parameters using the Grey-Taguchi method and experimental validation in TRIP-assisted steel. Mater. Sci. Eng. A 2020, 777, 139084. [Google Scholar] [CrossRef]
- Taguchi, G.; Chowdhury, S.; Wu, Y. Appendix A: Orthogonal arrays and linear graphs: Tools for Quality Engineering. In Taguchi’s Quality Engineering Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Girish, B.M.; Satish, B.M.; Sarapure, S.; Basawaraj. Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metall. Mater. Trans. A 2016, 47, 3193–3200. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Y.; Wang, Z.; Huang, P.; Zhang, P.; Guo, Q. Ultrasonic surface rolling strengthening and its parameter optimization on bearing raceway. Mater. Des. 2023, 232, 112156. [Google Scholar] [CrossRef]
- Sobri, M.; Shuhaimi, A.; Hakim, K.M.; Mamat, M.H.; Najwa, S.; Mazwan, M.M.; Ameera, N.; Musa, M.Z.; Rusop, M. Effect of annealing on surface of Nickel (Ni)/Indium Tin Oxide (ITO) nanostructures measured by Atomic Force Microscopy (AFM). Adv. Mater. Res. 2013, 832, 51–55. [Google Scholar] [CrossRef]
- Wu, D.; Lv, H.; Wang, H.; Yu, J. Surface micro-morphology and residual stress formation mechanisms of near-net-shaped blade produced by low-plasticity ultrasonic rolling strengthening process. Mater. Des. 2022, 215, 110513. [Google Scholar] [CrossRef]
- Gussev, M.N.; Leonard, K.J. In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel. J. Nucl. Mater. 2019, 517, 45–56. [Google Scholar] [CrossRef]
- Li, X.; Guan, B.; Wang, Y.-L.; Wei, Y.-L.; Li, B. Ascertaining the microstructural evolution and strengthening mechanisms of the gradient nanostructured pure titanium fabricated by ultrasonic surface rolling process. Surf. Coat. Technol. 2023, 473, 130047. [Google Scholar] [CrossRef]
- Tao, H.; Zhou, C.; Zheng, Y.; Hong, Y.; Zheng, J.; Zhang, L. Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel. Corros. Sci. 2019, 154, 268–276. [Google Scholar] [CrossRef]
- Bernoulli, D.; Cao, S.C.; Lu, J.; Dao, M. Enhanced repeated frictional sliding properties in 304 stainless steel with a gradient nanostructured surface. Surf. Coat. Technol. 2018, 339, 14–19. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, X.; Huang, P.; Wang, X.; Wang, X. Impact of surface ultrasonic rolling on cavitation erosion behavior of 304 stainless steel. Surf. Coat. Technol. 2020, 383, 125280. [Google Scholar]
- Jayalakshmi, M.; Huilgola, P.; Bhat, B.R.; Bhat, K.U. Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening. Surf. Coat. Technol. 2018, 344, 295–302. [Google Scholar] [CrossRef]
- Ghosh, S.; Bibhanshu, N.; Suwas, S.; Chatterjee, K. Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility. Mater. Sci. Eng. A 2021, 820, 141540. [Google Scholar] [CrossRef]
- Ralls, A.M.; Baldwin, C.; She, Y.; Wang, X.; Jiang, Y.; Menezes, P.L. Assessing the tribo-corrosion resistance of surface nanostructured stainless-steel. Surf. Coat. Technol. 2024, 483, 130755. [Google Scholar] [CrossRef]
Experimental Number | Factors | Responses | |||
---|---|---|---|---|---|
Lathe Speed | Amount of Rolling | Feed Rate | Rolling Passes | Residual Compressive Stress/MPa | |
1 | 100 | 0.03 | 0.1 | 1 | 552.06 |
2 | 100 | 0.05 | 0.15 | 3 | 1223.49 |
3 | 100 | 0.07 | 0.2 | 5 | 1117.37 |
4 | 100 | 0.09 | 0.25 | 7 | 763.56 |
5 | 100 | 0.11 | 0.3 | 9 | 912.12 |
6 | 140 | 0.03 | 0.15 | 5 | 1453.43 |
7 | 140 | 0.05 | 0.2 | 7 | 1362.40 |
8 | 140 | 0.07 | 0.25 | 9 | 1002.95 |
9 | 140 | 0.09 | 0.3 | 1 | 509.68 |
10 | 140 | 0.11 | 0.1 | 3 | 1162.90 |
11 | 180 | 0.03 | 0.2 | 9 | 1029.74 |
12 | 180 | 0.05 | 0.25 | 1 | 571.63 |
13 | 180 | 0.07 | 0.3 | 3 | 818.24 |
14 | 180 | 0.09 | 0.1 | 5 | 1150.71 |
15 | 180 | 0.11 | 0.15 | 7 | 1130.37 |
16 | 220 | 0.03 | 0.25 | 3 | 884.10 |
17 | 220 | 0.05 | 0.3 | 5 | 1094.82 |
18 | 220 | 0.07 | 0.1 | 7 | 1295.02 |
19 | 220 | 0.09 | 0.15 | 9 | 1328.69 |
20 | 220 | 0.11 | 0.2 | 1 | 859.04 |
21 | 260 | 0.03 | 0.3 | 7 | 943.01 |
22 | 260 | 0.05 | 0.1 | 9 | 1181.47 |
23 | 260 | 0.07 | 0.15 | 1 | 623.06 |
24 | 260 | 0.09 | 0.2 | 3 | 1296.27 |
25 | 260 | 0.11 | 0.25 | 5 | 1252.17 |
26 | 220 | 0.11 | 0.2 | 5 | −1252 |
Average S/N-1 | 58.88 | 59.35 | 60.21 | 55.74 | |
Average S/N-2 | 60.28 | 60.36 | 60.88 | 60.50 | |
Average S/N-3 | 59.19 | 59.48 | 60.97 | 61.63 | |
Average S/N-4 | 60.62 | 59.55 | 58.74 | 60.63 | |
Average S/N-5 | 60.21 | 60.44 | 58.38 | 60.68 | |
Delta | 1.74 | 1.09 | 2.59 | 5.89 | |
Rank | 3 | 4 | 2 | 1 |
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Co | N |
---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.24 | 1.3 | 0.0194 | 0.0034 | 17.18 | 13.12 | 2.23 | 0.12 | 0.01 | 0.12 |
Sample Number | PV (μm) | PV Change Rate | RMS (μm) | RMS Change Rate |
---|---|---|---|---|
No. 0 | 2.80 | 0.502 | ||
No. 4 | 1.11 | 60.36% | 0.387 | 22.91% |
No. 8 | 1.12 | 60.0% | 0.274 | 45.42% |
No. 12 | 1.41 | 49.64% | 0.325 | 35.26% |
No. 15 | 0.42 | 85.0% | 0.232 | 53.78% |
No. 18 | 0.83 | 70.36% | 0.267 | 46.81% |
No. 23 | 0.61 | 78.21% | 0.293 | 41.63% |
No. 25 | 1.26 | 55.0% | 0.297 | 40.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Feng, X.; Wu, H.; Su, G.; Yang, B. Improved Microstructure of 316LN Stainless Steel Performed by Ultrasonic Surface Rolling. Metals 2025, 15, 545. https://doi.org/10.3390/met15050545
Jiang L, Feng X, Wu H, Su G, Yang B. Improved Microstructure of 316LN Stainless Steel Performed by Ultrasonic Surface Rolling. Metals. 2025; 15(5):545. https://doi.org/10.3390/met15050545
Chicago/Turabian StyleJiang, Likun, Xingwang Feng, Huanchun Wu, Guosheng Su, and Bin Yang. 2025. "Improved Microstructure of 316LN Stainless Steel Performed by Ultrasonic Surface Rolling" Metals 15, no. 5: 545. https://doi.org/10.3390/met15050545
APA StyleJiang, L., Feng, X., Wu, H., Su, G., & Yang, B. (2025). Improved Microstructure of 316LN Stainless Steel Performed by Ultrasonic Surface Rolling. Metals, 15(5), 545. https://doi.org/10.3390/met15050545