Integration of Arc and Microstructural Analysis for Anomaly Detection in Walls Manufactured by GMA-Based WAAM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Labeling
2.2. Feature Selection and Extraction Process
3. Results
3.1. Visual Inspection of the Walls
3.2. Metallographic Analysis
3.3. Feature Extraction
3.4. Correlation Between Features and Target Parameter
4. Conclusions
- (1)
- The controlled introduction of contaminants, such as chalk, oil, and sand, led to observable geometric and microstructural changes due to their effect on the molten pool’s solidification and the appearance of microscopic defects;
- (2)
- The analysis of arc-related features, selected based on the controlled short-circuit transfer mode, identified strong correlations between variations in arc features—such as mean, minimum, standard deviation values, as well as the number of peaks—and the occurrence of anomalies in the WAAM process, as confirmed by metallographic analyses;
- (3)
- The study of features indicated that applying machine learning techniques for defect prediction could be enabled through the collected data. This expands the resources for controlling and mitigating anomalies in metal additive manufacturing processes;
- (4)
- The study confirmed that arc analysis can effectively detect anomalies in additive manufacturing processes, suggesting that such techniques could be refined to improve the reliability and quality of fabricated components.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Sehnem, S.; Lara, A.C.; Benetti, K.; Schneider, K.; Marcon, M.L.; da Silva, T.H.H. Improving startups through excellence initiatives: Addressing circular economy and innovation. Environ. Dev. Sustain. 2023, 26, 15237–15283. [Google Scholar] [CrossRef]
- Sireesha, M.; Lee, J.; Kranthi Kiran, A.S.; Babu, V.J.; Kee, B.B.T.; Ramakrishna, S. A review on additive manufacturing and its way into the oil and gas industry. RSC Adv. 2018, 8, 22460–22468. [Google Scholar] [CrossRef]
- Minguella-Canela, J.; Morales Planas, S.; Gomà Ayats, J.R.; De los Santos López, M.A. Assessment of the Potential Economic Impact of the Use of AM Technologies in the Cost Levels of Manufacturing and Stocking of Spare Part Products. Materials 2018, 11, 1429. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.; Matos, F.; Oliveira, J.P.; Neves, A.; Godina, R. Identifying strategic opportunities through the development of a roadmap for additive manufacturing: The example of Portugal. Heliyon 2023, 9, e19672. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, P.; Santi, G.M.; Leon-Cardenas, C.; Freddi, M.; Donnici, G.; Frizziero, L.; Liverani, A. Molds with Advanced Materials for Carbon Fiber Manufacturing with 3D Printing Technology. Polymers 2021, 13, 3700. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bhavsar, H.; Mahesh, P.V.S.; Srivastava, A.K.; Bora, B.J.; Saxena, A.; Dixit, A.R. Wire Arc Additive Manufacturing—A revolutionary method in additive manufacturing. Mater. Chem. Phys. 2022, 285, 126144. [Google Scholar] [CrossRef]
- Ron, T.; Shirizly, A.; Aghion, E. Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects. Materials 2023, 16, 2454. [Google Scholar] [CrossRef]
- Hassan, A.; Alnaser, I.A. A Review of Different Manufacturing Methods of Metallic Foams. ACS Omega 2024, 9, 6280–6295. [Google Scholar] [CrossRef]
- Liu, D.; Lee, B.; Babkin, A.; Chang, Y. Research Progress of Arc Additive Manufacture Technology. Materials 2021, 14, 1415. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Li, F.; Chen, S.; Zhao, Y.; Tian, H. Effect of in-process active cooling on forming quality and efficiency of tandem GMAW–based additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 101, 1349–1356. [Google Scholar] [CrossRef]
- Li, Y.; Polden, J.; Pan, Z.; Cui, J.; Xia, C.; He, F.; Mu, H.; Li, H.; Wang, L. A defect detection system for wire arc additive manufacturing using incremental learning. J. Ind. Inf. Integr. 2022, 27, 100291. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021(en); Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM: West Conshohocken, PA, USA, 2021. Available online: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en (accessed on 3 December 2024).
- Wang, J.F.; Sun, Q.J.; Wang, H.; Liu, J.P.; Feng, J.C. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A 2016, 676, 395–405. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Comput. Integr. Manuf. 2015, 31, 101–110. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, Y.; Han, J.; Zhang, C.; Xu, J.; Chen, D. Energy characteristics of droplet transfer in wire-arc additive manufacturing based on the analysis of arc signals. Measurement 2019, 134, 804–813. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S.; Nath, T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Mater. Today Commun. 2022, 31, 103739. [Google Scholar] [CrossRef]
- He, X.; Wang, T.; Wu, K.; Liu, H. Automatic defects detection and classification of low carbon steel WAAM products using improved remanence/magneto-optical imaging and cost-sensitive convolutional neural network. Measurement 2021, 173, 108633. [Google Scholar] [CrossRef]
- Ramalho, A.; Santos, T.G.; Bevans, B.; Smoqi, Z.; Rao, P.; Oliveira, J.P. Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel. Addit. Manuf. 2022, 51, 102585. [Google Scholar] [CrossRef]
- de Souto, J.I.V.; de Lima, J.S.; de Castro, W.B.; de Santana, R.A.C.; Silva, A.A.; de Abreu Santos, T.F.; Tavares, J.M.R.S. Effects of Contaminations on Electric Arc Behavior and Occurrence of Defects in Wire Arc Additive Manufacturing of 316L-Si Stainless Steel. Metals 2024, 14, 286. [Google Scholar] [CrossRef]
- Chabot, A.; Laroche, N.; Carcreff, E.; Rauch, M.; Hascoët, J.Y. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J. Intell. Manuf. 2020, 31, 1191–1201. [Google Scholar] [CrossRef]
- Lopez, A.; Bacelar, R.; Pires, I.; Santos, T.G.; Sousa, J.P.; Quintino, L. Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf. 2018, 21, 298–306. [Google Scholar] [CrossRef]
- Chen, L.; Yang, F.; Wang, R.; Zhang, Y.; Diao, Z.; Rong, M. Optical Spectral Physics-Informed Attention Network for Condition Monitoring in WAAM. IEEE Trans. Ind. Electron. 2023, 71, 9708–9718. [Google Scholar] [CrossRef]
- Li, Y.; Su, C.; Zhu, J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022, 13, 100330. [Google Scholar] [CrossRef]
- Lupo, M.; Ajabshir, S.Z.; Sofia, D.; Barletta, D.; Poletto, M. Experimental metrics of the powder layer quality in the selective laser sintering process. Powder Technol. 2023, 419, 118346. [Google Scholar] [CrossRef]
- Rodideal, N.; Machado, C.M.; Infante, V.; Braga, D.F.O.; Santos, T.G.; Vidal, C. Mechanical characterization and fatigue assessment of wire and arc additively manufactured HSLA steel parts. Int. J. Fatigue 2022, 164, 107146. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Gong, H.; Wu, Y.; Chen, X.; Zhang, X. Study on location-related thermal cycles and microstructure variation of additively manufactured inconel 718. J. Mater. Res. Technol. 2022, 18, 3056–3072. [Google Scholar] [CrossRef]
- de Lima, J.S.; da Silva Neto, J.F.; Maciel, T.M.; López, E.A.T.; de Santana, R.A.C.; de Abreu Santos, T.F. Effect of wire arc additive manufacturing parameters on geometric, hardness, and microstructure of 316LSi stainless steel preforms. Int. J. Adv. Manuf. Technol. 2024, 131, 5981–5996. [Google Scholar] [CrossRef]
- De Souto, J.I.V.; Ferreira, S.D.; de Lima, J.S.; de Castro, W.B.; Grassi, E.N.D.; Santos, T.F. de A. Effect of GMAW Process Parameters and Heat Input on Weld Overlay of Austenitic Stainless Steel 316L-Si. Soldag. Inspeção 2023, 28, e2809. [Google Scholar] [CrossRef]
- Bevans, B.; Ramalho, A.; Smoqi, Z.; Gaikwad, A.; Santos, T.G.; Rao, P.; Oliveira, J.P. Monitoring and flaw detection during wire-based directed energy deposition using in-situ acoustic sensing and wavelet graph signal analysis. Mater. Des. 2023, 225, 111480. [Google Scholar] [CrossRef]
- Surovi, N.A.; Soh, G.S. Acoustic feature based geometric defect identification in wire arc additive manufacturing. Virtual Phys. Prototyp. 2023, 18, e2210553. [Google Scholar] [CrossRef]
- Alcaraz, J.Y.; Foqué, W.; Sharma, A.; Tjahjowidodo, T. Indirect porosity detection and root-cause identification in WAAM. J. Intell. Manuf. 2023, 35, 1607–1628. [Google Scholar] [CrossRef]
- Meier, C.; Weissbach, R.; Weinberg, J.; Wall, W.A.; Hart, A.J. Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J. Mater. Process. Technol. 2019, 266, 484–501. [Google Scholar] [CrossRef]
- Roy, S.; Xiao, H.; Angelidakis, V.; Pöschel, T. Structural fluctuations in thin cohesive particle layers in powder-based additive manufacturing. Granul. Matter 2024, 26, 43. [Google Scholar] [CrossRef]
- Jeanne Rampe, M.; Zeth Lombok, J.; Arini Tiwow, V.; Milian Tompunu Tengker, S.; Bua, J. Characterization of silica (SiO2) based on beach sand from Sulawesi and Sumatra as silicon carbide (SiC) base material. J. Chem. Technol. Metall. 2023, 58, 467–476. [Google Scholar] [CrossRef]
- Akl, M.A.; Aly, H.F.; Soliman, H.M.A.; Abd ElRahman, A.M.E.; Abd-Elhamid, A.I. Preparation and characterization of silica nanoparticles by wet mechanical attrition of white and yellow sand. J. Nanomedicine Nanotechnol. 2013, 4, 2. [Google Scholar] [CrossRef]
- Alaoui Mouayd, A.; Koltsov, A.; Sutter, E.; Tribollet, B. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater. Chem. Phys. 2014, 143, 996–1004. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Gu, Y.; Yang, F. Effect of oxide on surface tension of molten metal. RSC Adv. 2017, 7, 53941–53950. [Google Scholar] [CrossRef]
- Yoo, S.-W.; Lee, C.-M.; Kim, D.-H. Effect of Functionally Graded Material (FGM) Interlayer in Metal Additive Manufacturing of Inconel-Stainless Bimetallic Structure by Laser Melting Deposition (LMD) and Wire Arc Additive Manufacturing (WAAM). Materials 2023, 16, 535. [Google Scholar] [CrossRef]
- Huang, W.; Nelson, B.; Ding, H. Surface wettability patterning of metal additive manufactured parts via laser-assisted functionalization. J. Laser Appl. 2023, 35, 42067. [Google Scholar] [CrossRef]
- Zhai, W.; Zhou, W.; Nai, S.M. Effect of Interface Wettability on Additively Manufactured Metal Matrix Composites: A Case Study of 316L-Y2O3 Oxide Dispersion-Strengthened Steel. Metals 2024, 14, 170. [Google Scholar] [CrossRef]
- Zhao, D.S.; Long, D.F.; Niu, T.R.; Liu, Y.J. Effect of Current Mode on Anisotropy of 316L Stainless Steel Wire Arc Additive Manufacturing. J. Mater. Eng. Perform. 2023, 33, 8728–8732. [Google Scholar] [CrossRef]
- Wu, W.; Xue, J.; Wang, L.; Zhang, Z.; Hu, Y.; Dong, C. Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing. Metals 2019, 9, 109. [Google Scholar] [CrossRef]
- Xie, B.; Xue, J.; Ren, X.; Wu, W.; Lin, Z. A comparative study of the CMT+P process on 316L stainless steel additive manufacturing. Appl. Sci. 2020, 10, 3284. [Google Scholar] [CrossRef]
- Wang, Z.; Zimmer-Chevret, S.; Léonard, F.; Bourlet, C.; Abba, G. In Situ Monitoring of Internal Defects by a Laser Sensor for CMT Based Wire-Arc Additive Manufacturing Parts. Defect Diffus. Forum 2022, 417, 67–72. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, C.R.; Du, X.D.; Tian, W.; Zhang, T.; Hu, J.S.; Li, B.; Li, P.C.; Liao, W.H. Research status and quality improvement of wire arc additive manufacturing of metals. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2023, 33, 969–996. [Google Scholar] [CrossRef]
- Huang, Y.; Yue, C.; Tan, X.; Zhou, Z.; Li, X.; Zhang, X.; Zhou, C.; Peng, Y.; Wang, K. Quality Prediction for Wire Arc Additive Manufacturing Based on Multi-source Signals, Whale Optimization Algorithm–Variational Modal Decomposition, and One-Dimensional Convolutional Neural Network. J. Mater. Eng. Perform. 2023, 33, 11351–11364. [Google Scholar] [CrossRef]
C% | Cr% | Ni% | Mo% | Mn% | Si% | Creq/Nieq * | FN | |
---|---|---|---|---|---|---|---|---|
AWS | 0.03 Max. | 18.0–20.0 | 11.0–14.0 | 2.0–3.0 | 1.0–2.5 | 0.65–1.0 | Varied | 5–8 ** |
XRF | 0.02 | 18.04 | 12.11 | 2.67 | 2.20 | 0.96 | 1.62 | 5 |
Parameter | Unity | Value |
---|---|---|
Peak current | A | 250 |
Base current | A | 50 |
Torch speed | mm·min−1 | 300 |
Interpass temperature | °C | 80 |
CTWD | mm | 10 |
Wire feed rate | m·min−1 | 5 |
Gas flow rate | l·min−1 | 18 |
Shielding gas | - | Commercial Argon (99.98%) |
Strategy/Contaminant | Chalk | Oil | Sand |
---|---|---|---|
P1 | W2 | W4 | W6 |
P2 | W3 | W5 | W7 |
- | W1 (Reference) |
Time Domain | Frequency Domain |
---|---|
Average | Average peak width |
Standard deviation | Number of peaks |
Maximum/Minimum | Standard deviation of peak width |
Curtose/Skewness | Average distance between neighboring peaks |
IVcc | Standard deviation of the distance between neighboring peaks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.J.E.B.; Souto, J.I.V.; Azevedo, I.J.S.; Castro, W.B.; Lima, J.S.; Delgado, J.M.P.Q.; Santana, R.A.C.; Gomez, R.S.; Bezerra, A.L.D.; Lima, A.G.B. Integration of Arc and Microstructural Analysis for Anomaly Detection in Walls Manufactured by GMA-Based WAAM. Metals 2025, 15, 110. https://doi.org/10.3390/met15020110
Santos LJEB, Souto JIV, Azevedo IJS, Castro WB, Lima JS, Delgado JMPQ, Santana RAC, Gomez RS, Bezerra ALD, Lima AGB. Integration of Arc and Microstructural Analysis for Anomaly Detection in Walls Manufactured by GMA-Based WAAM. Metals. 2025; 15(2):110. https://doi.org/10.3390/met15020110
Chicago/Turabian StyleSantos, Lucas J. E. B., Joyce I. V. Souto, Igo J. S. Azevedo, Walman B. Castro, Jefferson S. Lima, João M. P. Q. Delgado, Renato A. C. Santana, Ricardo S. Gomez, André L. D. Bezerra, and Antonio G. B. Lima. 2025. "Integration of Arc and Microstructural Analysis for Anomaly Detection in Walls Manufactured by GMA-Based WAAM" Metals 15, no. 2: 110. https://doi.org/10.3390/met15020110
APA StyleSantos, L. J. E. B., Souto, J. I. V., Azevedo, I. J. S., Castro, W. B., Lima, J. S., Delgado, J. M. P. Q., Santana, R. A. C., Gomez, R. S., Bezerra, A. L. D., & Lima, A. G. B. (2025). Integration of Arc and Microstructural Analysis for Anomaly Detection in Walls Manufactured by GMA-Based WAAM. Metals, 15(2), 110. https://doi.org/10.3390/met15020110