Steel Surface Defect Detection Technology Based on YOLOv8-MGVS
Abstract
1. Introduction
2. Improved Model Introduction
2.1. YOLOv8 Model
2.2. Improved YOLOv8 Model
2.2.1. C2f_MLCA Module
2.2.2. GSConv Module
2.2.3. VoVGscsp Module
2.2.4. SA-Detect Module
3. Experimental Results and Analysis
3.1. Experimental Environment and Dataset
3.2. Experimental Equipment and Evaluation Indicators
3.3. Attention Mechanism Experiment
3.4. Ablation Experiment
3.5. Comparison Experiment
3.6. Generalization Experiment
3.6.1. Generalization Experiment 1
3.6.2. Generalization Experiment 2
3.7. YOLOv8-MGVS Interface System
4. Conclusions
- The C2f_MLCA module can improve the feature extraction capability of the backbone network by integrating global, local, spatial, and channel information.
- The GSConv module can reduce computational volume and parameter volume while maintaining computational accuracy. The VoVGscsp module leverages the network’s cross-layer aggregation capabilities to improve feature fusion capabilities.
- The SA mechanism can improve the detection ability for small target defects.
- Compared with the advanced YOLOv11n model, our model’s accuracy and recall rate are higher than 2.8% and 4.9% of the YOLOv11n model, and the detection speed is 5.8(FPS) lower than it. The model also performs well on the GC10-DET dataset and SDD-DET dataset, which has better generalization ability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Zeng, K.; Chen, B.; Xiao, P.; Zhu, L. Surface defect detection algorithm for continuous casting billets based on improved YOLOv7. China Metall. 2024, 34, 101–112. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Z.; Zhu, M.; Zhang, K.; Gao, X. An integrated production batch planning approach for steelmaking-continuous casting with cast batching plan as the core. Comput. Ind. Eng. 2022, 173, 108636. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Anantharaman, R.; Velazquez, M.; Lee, Y. Utilizing mask R-CNN for detection and segmentation of oral diseases. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2197–2204. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A. Ssd: Single shot multibox detector. In Proceedings of the ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; Foresta, F.; Laganà, F.; Palumbo, A. Intuitionistic fuzzy divergence for evaluating the mechanical stress state of steel plates subject to bi-axial loads. Integr. Comput.-Aided Eng. 2024, 31, 363–379. [Google Scholar] [CrossRef]
- Ichiro, D.; Ken, M.; Keijiro, T.; Rei, K. Thickness Classifier on Steel in Heavy Melting Scrap by Deep-learning-based Image Analysis. ISIJ Int. 2023, 63, 197–203. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Z.; Xiao, Z.; Huang, D.; Yang, C.; He, F.; Zhou, X.; Zhao, T. CNN-based Transfer Learning in Intelligent Recognition of Scrap Bundles. ISIJ Int. 2023, 63, 1383–1393. [Google Scholar] [CrossRef]
- Cui, W.; Song, K.; Feng, H.; Jia, X.; Liu, S.; Yan, Y. Autocorrelation-Aware Aggregation Network for Salient Object Detection of Strip Steel Surface Defects. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, X.; Li, Q. Surface Defect Detection of Steel Strips Based on Anchor-Free Network With Channel Attention and Bidirectional Feature Fusion. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Han, C.; Li, G.; Liu, Z. Two-Stage Edge Reuse Network for Salient Object Detection of Strip Steel Surface Defects. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Tang, K.; Da Wang, Y.; Mostaghimi, P.; Knackstedt, M.; Hargrave, C.; Armstrong, R.T. Deep convolutional neural network for 3D mineral identification and liberation analysis. Miner. Eng. 2022, 183, 107592. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, R.; Li, Z.; Ye, M.; Dai, M. SDD-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Strip Surface Defects. Metals 2024, 14, 650. [Google Scholar] [CrossRef]
- Meng, L.; Cui, X.; Liu, R.; Zheng, Z.; Shao, H.; Liu, J.; Peng, Y.; Zheng, L. Research on Metallurgical Saw Blade Surface Defect Detection Algorithm Based on SC-YOLOv5. Processes 2023, 11, 2564. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, L.; Qiang, L.; Li, L. CRGF-YOLO: An Optimized Multi-Scale Feature Fusion Model Based on YOLOv5 for Detection of Steel Surface Defects. Int. J. Comput. Intell. Syst. 2024, 17, 154. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Xin, Z. Efficient detection model of steel strip surface defects based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Gao, S.; Tian, Y. Research on Steel Surface Defects Detection Algorithms by YOLOv8 Based on Attention Mechanism. IAENG Int. J. Comput. Sci. 2024, 51, 1309–1315. [Google Scholar]
- Zhang, X.; Wang, Y.; Fang, H. Steel surface defect detection algorithm based on ESI-YOLOv8. Mater. Res. Express 2024, 11, 056509. [Google Scholar] [CrossRef]
- Cheng, H.; Kang, F. Corrosion Detection and Grading Method for Hydraulic Metal Structures Based on an Improved YOLOv10 Sequential Architecture. Appl. Sci. 2024, 14, 12009. [Google Scholar] [CrossRef]
- Banduka, N.; Tomić, K.; Živadinović, J.; Mladineo, M. Automated Dual-Side Leather Defect Detection and Classification Using YOLOv11: A Case Study in the Finished Leather Industry. Processes 2024, 12, 2892. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Wu, B.; An, D. NST-YOLO11: ViT Merged Model with Neuron Attention for Arbitrary-Oriented Ship Detection in SAR Images. Remote Sens. 2024, 16, 4760. [Google Scholar] [CrossRef]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499. [Google Scholar] [CrossRef]
- Wan, D.; Lu, R.; Shen, S.; Xu, T.; Lang, X.; Ren, Z. Mixed local channel attention for object detection. Eng. Appl. Artif. Intell. 2023, 123, 106442. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A lightweight-design for real-time detector architectures. J. Real-Time Image Process. 2024, 21, 62. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y. Sa-net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2235–2239. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.; Luo, B.; Wang, G. Depth-Wise Convolutions in Vision Transformers for Efficient Training on Small Datasets. Neurocomputing 2025, 617, 128998. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.; Kweon, I. CBAM: Convolutional block attention module. In Proceedings of the ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar] [CrossRef]
Models | mAP@0.5/% | Recall/% | GFLOPS | Params/M |
---|---|---|---|---|
YOLOv8n | 73.8 | 64.4 | 8.1 | 3.006 |
+C2_SE | 74.7 | 68.7 | 8.4 | 3.057 |
+C2f_CBAM | 75.2 | 71.9 | 8.5 | 3.082 |
+C2f_CA | 75.8 | 66.8 | 8.4 | 3.063 |
+C2f_MLCA | 76.1 | 71.0 | 8.2 | 3.012 |
Model | C2f_MLCA | GSConv | VoVGscsp | SA-Detect | mAP@0.5/% | Recall/% | GFLOPS | Params/M |
---|---|---|---|---|---|---|---|---|
1 | √ | 76.1 | 71.0 | 8.2 | 3.012 | |||
2 | √ | 74.4 | 71.6 | 8.0 | 2.912 | |||
3 | √ | 76.8 | 71.4 | 7.4 | 2.889 | |||
4 | √ | 75.6 | 68.2 | 7.6 | 3.037 | |||
5 | √ | √ | 77.4 | 71.7 | 8.1 | 2.919 | ||
6 | √ | √ | √ | 77.4 | 67.6 | 7.4 | 2.802 | |
7 | √ | √ | √ | √ | 79.0 | 74.9 | 6.9 | 2.831 |
Models | mAP@0.5/% | Recall/% | GFLOPs | Params/M | FPS | AP/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | In | Pa | Ps | Rs | Sc | ||||||
Faster-RCNN | 76.1 | 89.9 | 402.2 | 137.100 | 16.8 | 45.1 | 83.6 | 91.3 | 87.9 | 60.5 | 87.9 |
SSD | 63.8 | 38.7 | 281.9 | 26.285 | 33.6 | 47.3 | 68.5 | 88.6 | 68.4 | 54.7 | 55.0 |
YOLOv5s | 75.0 | 69.9 | 15.8 | 7.026 | 128.0 | 49.8 | 80.6 | 92.3 | 83.9 | 62.5 | 80.6 |
YOLOv7-tiny | 73.5 | 74.5 | 13.2 | 6.029 | 146.8 | 54.4 | 84.4 | 92.3 | 76.6 | 54.6 | 78.6 |
YOLOv8n | 73.8 | 64.4 | 8.1 | 3.006 | 177.8 | 40.5 | 81.6 | 91.0 | 81.0 | 60.4 | 88.4 |
YOLOv10n | 77.0 | 70.5 | 8.2 | 2.697 | 173.6 | 45.4 | 80.9 | 91.1 | 82.3 | 74.2 | 88.1 |
YOLOv11n | 76.2 | 70.0 | 6.4 | 2.591 | 195.0 | 47.8 | 82.3 | 95.9 | 78.7 | 65.0 | 87.2 |
Improved YOLOv8n | 79.0 | 74.9 | 6.9 | 2.831 | 189.2 | 54.6 | 84.2 | 92.3 | 82.6 | 72.7 | 87.3 |
Models | AP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pu | Cg | Os | In | Wl | Ws | Ss | Rp | Cr | Wf | |
YOLOv7-tiny | 89.4 | 95.3 | 63.9 | 58.9 | 82.7 | 66.9 | 55.8 | 23.1 | 40.2 | 79.0 |
YOLOv8n | 88.1 | 97.7 | 56.5 | 36.0 | 90.4 | 72.4 | 53.4 | 40.1 | 39.2 | 93.8 |
YOLOv10n | 87.4 | 91.3 | 58.0 | 39.9 | 87.0 | 74.4 | 42.3 | 33.1 | 38.4 | 80.8 |
YOLOv11n | 91.2 | 96.7 | 56.3 | 37.8 | 95.3 | 67.3 | 50.5 | 41.1 | 40.2 | 93.8 |
Improved YOLOv8n | 92.7 | 97.3 | 60.7 | 39.9 | 89.4 | 71.8 | 52.3 | 60.1 | 49.9 | 88.0 |
Models | mAP@0.5/% | Recall/% | GFLOPS | Params/M | FPS |
---|---|---|---|---|---|
YOLOv7-tiny | 65.5 | 66.6 | 13.3 | 6.039 | 145.5 |
YOLOv8n | 66.8 | 62.4 | 8.1 | 3.008 | 169.7 |
YOLOv10n | 63.3 | 58.6 | 8.2 | 2.698 | 178.3 |
YOLOv11n | 67.0 | 64.6 | 6.5 | 2.596 | 204.3 |
Improved YOLOv8n | 70.2 | 68.3 | 6.7 | 2.800 | 192.0 |
Models | mAP@0.5/% | Recall/% | GFLOPs | Params/M | FPS | AP/% | |||
---|---|---|---|---|---|---|---|---|---|
Bd | Cl | Cr | Du | ||||||
YOLOv8n | 56.2 | 53.2 | 8.1 | 3.006 | 144.7 | 6.0 | 56.8 | 81.7 | 68.4 |
YOLOv10n | 54.4 | 50.7 | 8.4 | 2.708 | 151.2 | 7.2 | 62.6 | 88.0 | 59.8 |
YOLOv11n | 56.2 | 53.6 | 6.4 | 2.591 | 154.5 | 8.3 | 65.3 | 88.7 | 62.4 |
Improved YOLOv8n | 57.0 | 56.9 | 6.9 | 2.830 | 163.9 | 9.0 | 66.2 | 90.7 | 62.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, K.; Xia, Z.; Qian, J.; Du, X.; Xiao, P.; Zhu, L. Steel Surface Defect Detection Technology Based on YOLOv8-MGVS. Metals 2025, 15, 109. https://doi.org/10.3390/met15020109
Zeng K, Xia Z, Qian J, Du X, Xiao P, Zhu L. Steel Surface Defect Detection Technology Based on YOLOv8-MGVS. Metals. 2025; 15(2):109. https://doi.org/10.3390/met15020109
Chicago/Turabian StyleZeng, Kai, Zibo Xia, Junlei Qian, Xueqiang Du, Pengcheng Xiao, and Liguang Zhu. 2025. "Steel Surface Defect Detection Technology Based on YOLOv8-MGVS" Metals 15, no. 2: 109. https://doi.org/10.3390/met15020109
APA StyleZeng, K., Xia, Z., Qian, J., Du, X., Xiao, P., & Zhu, L. (2025). Steel Surface Defect Detection Technology Based on YOLOv8-MGVS. Metals, 15(2), 109. https://doi.org/10.3390/met15020109