Recent Insights into Mechanical Properties of Metallic Alloys
1. Introduction
2. Highlights of the Contributions
2.1. Ductile–Brittle Transition (DBT) in BCC Metals: Mechanisms and Dilute-Solution Softening
2.2. Mechanical Testing Methods for Studying Hydrogen Embrittlement (HE) for Pipeline Steels
2.3. Cold-Work Tool Steel X160CrMoV12: Secondary Hardening, Retained Austenite (RA) Control, and Wear
2.4. Coalesced Bainite to Mitigate Hydrogen Embrittlement in Tempered Martensitic Steels
2.5. Wrought Inconel 718 Under Variable-Amplitude Thermal Cycles with Mechanical Load
2.6. 50Cr15MoV Martensitic Stainless Steel: Residual Austenite Stability and Cutting Performance
2.7. PBF-LB GRCop-42: Thermomechanical Properties at Low Temperature and Thermal Conductivity
2.8. Rails with Lubrication Holes: Experiments and Finite Element Modelling
2.9. Elastic Origins of Hardness in Quenchable High-Pressure Metal Nitrides
Acknowledgments
Conflicts of Interest
List of Contributions
- [C1]
- Zhang, J.; Zhao, T.; Hou, T.; Li, Y.; Wu, K. Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals. Metals 2025, 15, 743. https://doi.org/10.3390/met15070743.
- [C2]
- Paterlini, L.; Re, G.; Curia, A.; Ormellese, M.; Bolzoni, F. Mechanical Testing Methods for Assessing Hydrogen Embrittlement in Pipeline Steels: A Review. Metals 2025, 15, 1123. https://doi.org/10.3390/met15101123.
- [C3]
- Bendikiene, R.; Kavaliauskiene, L. Impact of Heat Treatment Conditions and Cold Plastic Deformation on Secondary Hardening and Performance of Cold Work Tool Steel X160CrMoV12. Metals 2024, 14, 1121. https://doi.org/10.3390/met14101121.
- [C4]
- Shin, H.-C.; Kim, S.-G.; Hwang, B. Role of Coalesced Bainite in Hydrogen Embrittlement of Tempered Martensitic Steels. Metals 2024, 14, 1171. https://doi.org/10.3390/met14101171.
- [C5]
- Pan, S.; Xu, S.; Yu, G. Experimental and Numerical Study of Wrought Inconel 718 Under Thermal Cycles of Variable Amplitude Coupled with Mechanical Loading. Metals 2024, 14, 1345. https://doi.org/10.3390/met14121345.
- [C6]
- Guo, F.; Peng, Z.; Lu, G.; Liu, W.; Li, G.; Zhang, P.; Shang, C. Enhanced Cutting Performance of 50Cr15MoV Martensitic Stainless Steel Through Controlled Residual Austenite Stability. Metals 2025, 15, 95. https://doi.org/10.3390/met15010095.
- [C7]
- Cortis, D.; Giancarli, C.; Ferella, F.; Di Donato, C.; Elleboro, R.; Razeto, A.; Nisi, S.; Orlandi, D. Experimental Evaluation of Thermo-Mechanical Properties of GRCop-42, Produced by PBF-LB, at Low Temperatures. Metals 2025, 15, 604. https://doi.org/10.3390/met15060604.
- [C8]
- Sainz-Aja, J.; San Roman, P.; Casado, J.A.; Carrascal, I.; Arroyo, B.; Ferreño, D.; Moreno, R.; Peribañez, D.; Vegas, H.; Diego, S. Fatigue Life Assessment of Railway Rails with Lubrication Holes: Experimental Validation and Finite Element Modelling. Metals 2025, 15, 992. https://doi.org/10.3390/met15090992.
- [C9]
- Zhang, S.; Liu, Y.; Wang, Z.; Zhu, J.; Wu, J.; Bao, K. Elastic Origins of Hardness in Quenchable High-Pressure Metal Nitrides: A Unified Structure-Elasticity Baseline. Metals 2025, 15, 1251. https://doi.org/10.3390/met15111251.
References
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Grasso, M.; Colosimo, B.M. Process Defects and In-situ Monitoring in Metal PBF: A Review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef]
- Mancini, E.; Sasso, M.; Pilone, D.; Cortis, D.; Orlandi, D.; Utzeri, M.; Arrà, V.; Di Angelo, L. Exploring Tensile and Compressive Properties of SLMed CuCrZr Alloy at High Strain Rates. Strain 2025, 61, e70015. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Pilone, D. Metallurgical Defects and Roughness Investigation in the Laser Powder Bed Fusion Multi-Scanning Strategy of AlSi10Mg Parts. Metals 2024, 14, 711. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys—Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Moverare, J.; Lancaster, R.J.; Jones, J.; Stekovic, S.; Whittaker, M.T. A Review of Recent Advances in the Understanding and Performance of Inconel 718. Metall. Mater. Trans. A 2025, 56, 3332–3363. [Google Scholar] [CrossRef]
- Deng, W.; Xu, J.; Hu, Y.; Huang, Z.; Jiang, L. Isothermal and Thermomechanical Fatigue Behaviour of Inconel 718. Mater. Sci. Eng. A 2019, 742, 813–819. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Huang, C.; Liu, P.-Y.; Yen, H.-W.; Niu, R.; Burr, P.; Moore, K.L.; Martínez-Pañeda, E.; Atrens, A.; Cairney, J.M. Hydrogen Trapping and Embrittlement in Metals—A Review. Int. J. Hydrogen Energy 2025, 136, 789–821. [Google Scholar] [CrossRef]
- Gong, P.; Turk, A.; Nutter, J.; Yu, F.; Wynne, B.; Rivera-Diaz-del-Castillo, P.; Rainforth, W.M. Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steel. Acta Mater. 2022, 223, 117488. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen Embrittlement Phenomena and Mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- Jurči, P.; Dlouhý, I. Cryogenic Treatment of Martensitic Steels: Microstructural Fundamentals and Implications for Mechanical Properties and Wear and Corrosion Performance. Materials 2024, 17, 548. [Google Scholar] [CrossRef]
- Kara, F.; Filiz, S.; Yamiç, C. Investigation of the Effect of Shallow and Deep Cryogenic Treatment on Wear and Impact Performance of DIN 1.2344 Steel. J. Mater. Res. Technol. 2025, 35, 4553–4565. [Google Scholar] [CrossRef]
- Zerbst, U.; Lundén, R.; Edel, K.-O.; Smith, R.A. Introduction to the Damage Tolerance Behaviour of Railway Rails—A Review. Eng. Fract. Mech. 2009, 76, 2563–2601. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Zeng, Y.; Zhang, Y.; Kong, D.; Li, X.; Zhu, T.; Li, X.; Mao, S.; Zhang, Z.; et al. Nanoscale Ductile Fracture and Associated Atomistic Mechanisms in a Body-Centered Cubic Refractory Metal. Nat. Commun. 2023, 14, 5540. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilone, D. Recent Insights into Mechanical Properties of Metallic Alloys. Metals 2025, 15, 1356. https://doi.org/10.3390/met15121356
Pilone D. Recent Insights into Mechanical Properties of Metallic Alloys. Metals. 2025; 15(12):1356. https://doi.org/10.3390/met15121356
Chicago/Turabian StylePilone, Daniela. 2025. "Recent Insights into Mechanical Properties of Metallic Alloys" Metals 15, no. 12: 1356. https://doi.org/10.3390/met15121356
APA StylePilone, D. (2025). Recent Insights into Mechanical Properties of Metallic Alloys. Metals, 15(12), 1356. https://doi.org/10.3390/met15121356
