Research Progress on the Corrosion Behavior of Metallic Glass and Its Composites
Abstract
1. Introduction
2. Corrosion Characteristics of Metallic Glass
3. Corrosion Characteristics of Metallic Glass Composites
4. The Influencing Factors of Corrosion Resistance of Metallic Glass and Its Composites
4.1. Influence of Alloy Composition
4.2. Influence of Microstructure
4.3. Effects of the Preparation Technology
4.4. Influence of Other Factors
5. Optimization Strategies for the Corrosion Resistance of Metallic Glass and Its Composites
5.1. Surface Treatment Methods
5.2. Optimization of Alloy Composition
5.3. Corrosion Inhibitors
6. Summary and Outlook
- (1)
- Data-driven composition and structure design
- (2)
- Integration of emerging manufacturing technologies
- (3)
- Microstructure regulation and passive film engineering
- (4)
- Corrosion behavior under multi-factor coupling and environmentally sustainable processing
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szewieczek, D.; Baron, A.; Nawrat, G. Electrochemical behavior of Fe78Si9B13alloy in sulphate and chloride solution. J. Mater. Process. Technol. 2006, 175, 411–415. [Google Scholar] [CrossRef]
- Maurice, V.; Marcus, P. Progress in corrosion science at atomic and nanometric scales. Prog. Mater. Sci. 2018, 95, 132–171. [Google Scholar] [CrossRef]
- Javidi, M.; Bekhrad, S. Failure analysis of a wet gas pipeline due to localised CO2 corrosion. Eng. Fail. Anal. 2018, 89, 46–56. [Google Scholar] [CrossRef]
- Byrne, C.J.; Eldrup, M. Bulk metallic glasses. Science 2008, 321, 502–503. [Google Scholar] [CrossRef]
- Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425. [Google Scholar] [CrossRef]
- Zhang, L.C.; Jia, Z.; Lyu, F.C.; Liang, S.X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Klement, W.; Willens, R.; Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Chen, H.S.; Turnbull, D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 1969, 17, 1021–1031. [Google Scholar] [CrossRef]
- Nishiyama, N.; Takenaka, K.; Miura, H.; Saidoh, N.; Zeng, Y.Q.; Inoue, A. The world’s biggest glassy alloy ever made. Intermetallics 2012, 30, 19–24. [Google Scholar] [CrossRef]
- Qiao, J.W. In-situ Dendrite/Metallic Glass Matrix Composites: A Review. J. Mater. Sci. Technol. 2013, 29, 685–701. [Google Scholar] [CrossRef]
- Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef]
- Schuhmacher, B.; Koster, U. Contact reactions at aluminum transition-metal interfaces. Z. Fur Met. 1991, 82, 464–469. [Google Scholar]
- Steinbrink, G.; Pungewitteler, B.; Koster, U. Influence of an oxygen atmosphere and surface treatments on surface crystallization of (Co,Ni)-B glassses. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 1991, 133, 624–629. [Google Scholar] [CrossRef]
- Schuhmacher, B.; Köster, U. Contact reactions at thin film Aluminium/transition metal interfaces. MRS Online Proc. Libr. 1989, 167, 323–328. [Google Scholar] [CrossRef]
- Jastrow, L.; Meuris, M.; Köster, U.; Froumin, N.; Eliezer, D. Oxidation of glassy and nanocrystalline Zr70Pd30 alloys. J. Metastable Nanocrystalline Mater. 2002, 13, 627–632. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. Mrs Bull. 1999, 24, 42–56. [Google Scholar] [CrossRef]
- Tang, M.Q.; Zhang, H.F.; Zhu, Z.W.; Fu, H.M.; Wang, A.M.; Li, H.; Hu, Z.Q. TiZr-base Bulk Metallic Glass with over 50 mm in Diameter. J. Mater. Sci. Technol. 2010, 26, 481–486. [Google Scholar] [CrossRef]
- Gu, J.L.; Shao, Y.; Yao, K.F. The novel Ti-based metallic glass with excellent glass forming ability and an elastic constant dependent glass forming criterion. Materialia 2019, 8, 100433. [Google Scholar] [CrossRef]
- Mei, J.N.; Li, J.S.; Kou, H.C.; Fu, H.Z.; Zhou, L. Effects of Nb on the formation of icosahedral quasicrystalline phase in Ti-rich Ti-Zr-Ni-Cu-Be glassy forming alloys. J. Non-Cryst. Solids 2008, 354, 3332–3335. [Google Scholar] [CrossRef]
- Terajima, T. Cu metallization of the surface of Cu-Zr-based metallic glass. J. Alloys Compd. 2012, 536, S113–S116. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, G.H.; Kim, H.A.; Lee, A.Y.; Oh, H.R.; Lee, C.W.; Lee, M.H. Micro-deposition of Cu-based metallic glass wire by direct laser melting process. Mater. Lett. 2017, 202, 1–4. [Google Scholar] [CrossRef]
- Xing, L.Q.; Eckert, J.; Loser, W.; Schultz, L. Effect of cooling rate on the precipitation of quasicrystals from the Zr-Cu-Al-Ni-Ti amorphous alloy. Appl. Phys. Lett. 1998, 73, 2110–2112. [Google Scholar] [CrossRef]
- David, K.; Maaß, R.; Florian, H.D.T.; Jörg, F.L. Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. Appl. Phys. Lett. 2010, 96, 61901. [Google Scholar]
- Yao, K.F.; Zhang, C.Q. Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett. 2007, 90, 61901. [Google Scholar] [CrossRef]
- Lou, H.B.; Wang, X.D.; Xu, F.; Ding, S.Q.; Cao, Q.P.; Hono, K.; Jiang, J.Z. 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl. Phys. Lett. 2011, 99, 51910. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Geng, H.S.; Zhuang, Y.Z.; Li, P.W. Progress, Applications, and Challenges of Amorphous Alloys: A Critical Review. Inorganics 2024, 12, 232. [Google Scholar] [CrossRef]
- Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–488. [Google Scholar] [CrossRef]
- Demetriou, M.D.; Launey, M.E.; Garrett, G.; Schramm, J.P.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128. [Google Scholar] [CrossRef]
- Wang, W.H. Bulk Metallic Glasses with Functional Physical Properties. Adv. Mater. 2009, 21, 4524–4544. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, C.; Yang, L.; Lv, J.W.; Zhang, H.R.; Shi, Z.L.; Zhang, X.Y.; Ma, M.Z. Formation ability, thermal stability, and mechanical properties of the Zr50Cu34Al8Ag8 amorphous alloys prepared by different mold materials. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2022, 840, 142978. [Google Scholar] [CrossRef]
- Hashimoto, K. 2002 W.R. Whitney Award Lecture: In pursuit of new corrosion-resistant alloys. Corrosion 2002, 58, 715–722. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, W.; Zhang, Q.S.; Asami, K.; Inoue, A. Electrochemical properties and surface analysis of Cu-Zr-Ag-Al-Nb bulk metallic glasses. J. Alloys Compd. 2009, 483, 317–320. [Google Scholar] [CrossRef]
- Guo, S.F.; Chan, K.C.; Xie, S.H.; Yu, P.; Huang, Y.J.; Zhang, H.J. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. J. Non-Cryst. Solids 2013, 369, 29–33. [Google Scholar] [CrossRef]
- Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog. Mater. Sci. 2019, 103, 235–318. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Gong, P.; Deng, L.; Jin, J.S.; Wang, S.B.; Wang, X.Y.; Yao, K.F. Review on the Research and Development of Ti-Based Bulk Metallic Glasses. Metals 2016, 6, 264. [Google Scholar] [CrossRef]
- Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267. [Google Scholar] [CrossRef]
- Gao, K.; Zhu, X.G.; Chen, L.; Li, W.H.; Xu, X.; Pan, B.T.; Li, W.R.; Zhou, W.H.; Li, L.; Huang, W.; et al. Recent development in the application of bulk metallic glasses. J. Mater. Sci. Technol. 2022, 131, 115–121. [Google Scholar] [CrossRef]
- Schroers, J.; Nguyen, T.; O’Keeffe, S.; Desai, A. Thermoplastic forming of bulk metallic glass—Applications for MEMS and microstructure fabrication. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2007, 449, 898–902. [Google Scholar] [CrossRef]
- Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–839. [Google Scholar] [CrossRef]
- Madge, S.V. Toughness of Bulk Metallic Glasses. Metals 2015, 5, 1279–1305. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J.L.; Shek, C.H.; Yan, J.W. Effects of pre-compression deformation on nanoindentation response of Zr65Cu15Al10Ni10 bulk metallic glass. J. Alloys Compd. 2016, 674, 223–228. [Google Scholar] [CrossRef]
- Ma, H.; Xu, J.; Ma, E. Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 2003, 83, 2793–2795. [Google Scholar] [CrossRef]
- Jang, J.S.C.; Li, J.B.; Lee, S.L.; Chang, Y.S.; Jian, S.R.; Huang, J.C.; Nieh, T.G. Prominent plasticity of Mg-based bulk metallic glass composites by ex-situ spherical Ti particles. Intermetallics 2012, 30, 25–29. [Google Scholar] [CrossRef]
- Shi, Y.F.; Falk, M.L. A computational analysis of the deformation mechanisms of a nanocrystal-metallic glass composite. Acta Mater. 2008, 56, 995–1000. [Google Scholar] [CrossRef]
- Hajlaoui, K.; Yavari, A.R.; LeMoulec, A.; Botta, W.J.; Vaughan, F.G.; Das, J.; Greer, A.L.; Kvick, Å. Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Cryst. Solids 2007, 353, 327–331. [Google Scholar] [CrossRef]
- Kim, Y.C.; Na, J.H.; Park, J.M.; Kim, D.H.; Lee, J.K.; Kim, W.T. Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 2003, 83, 3093–3095. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, Y.; Du, Y.; Han, W.C.; Hua, D.P.; Zhai, H.M.; Huang, P.; Wang, F.; Wang, H.F. Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. J. Alloys Compd. 2019, 780, 671–679. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, J.T.; Park, J.M.; Song, G.; Wang, W.M.; Kim, K.B. Mechanical, deformation and fracture behaviors of bulk metallic glass composites reinforced by spherical B2 particles. Prog. Nat. Sci.-Mater. Int. 2018, 28, 704–710. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, R.J.; Wang, W.H.; Zhang, T.; Inoue, A. Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties. Adv. Funct. Mater. 2004, 14, 55–63. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Fu, H.M.; Li, Z.K.; Zhu, Z.W.; Li, H.; Zhang, H.W.; Wang, A.M.; Wang, Y.D.; Zhang, H.F. Compressive mechanical properties and failure modes of Zr-based bulk metallic glass composites containing tungsten springs. Mater. Des. 2018, 160, 652–660. [Google Scholar] [CrossRef]
- Sarac, B.; Schroers, J. Designing tensile ductility in metallic glasses. Nat. Commun. 2013, 4, 2158. [Google Scholar] [CrossRef]
- Madge, S.V.; Sharma, P.; Louzguine-Luzgin, D.V.; Greer, A.L.; Inoue, A. New La-based glass–crystal ex situ composites with enhanced toughness. Scr. Mater. 2010, 62, 210–213. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Duan, G.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085–1089. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, T.Y.; Huang, Z.B.; Zhou, Q.; Hua, K.; Li, X.L.; Du, Y.; Jia, Q.; Zhang, L.; Zhang, H.F. Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite. J. Mater. Sci. Technol. 2023, 134, 33–41. [Google Scholar] [CrossRef]
- Ma, W.F.; Kou, H.C.; Chen, C.S.; Li, J.S.; Chang, H.; Zhou, L.; Fu, H.Z. Compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Mater. Sci. Eng. A 2008, 486, 308–312. [Google Scholar] [CrossRef]
- Wang, M.L.; Chen, G.L.; Hui, X.; Zhang, Y.; Bai, Z.Y. Optimized interface and mechanical properties of W fiber/Zr-based bulk metallic glass composites by minor Nb addition. Intermetallics 2007, 15, 1309–1315. [Google Scholar] [CrossRef]
- Xie, G.Q.; Qin, F.X.; Zhu, S.L. Recent progress in Ti-based metallic glasses for application as biomaterials. Mater. Trans. 2013, 54, 1314–1323. [Google Scholar] [CrossRef]
- Xu, Y.K.; Ma, H.; Xu, J.; Ma, E. Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 2005, 53, 1857–1866. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.F. Ti-based metallic glass composites containing β-Ti dendrites. Prog. Mater. Sci. 2025, 152, 101472. [Google Scholar] [CrossRef]
- Mondal, K.; Murty, B.S.; Chatterjee, U.K. Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments. Corros. Sci. 2006, 48, 2212–2225. [Google Scholar] [CrossRef]
- Pang, S.J.; Zhang, T.; Asami, K.; Inoue, A. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002, 50, 489–497. [Google Scholar] [CrossRef]
- Morrison, M.L.; Buchanan, R.A.; Peker, A.; Liaw, P.K.; Horton, J.A. Electrochemical behavior of a Ti-based bulk metallic glass. J. Non-Cryst. Solids 2007, 353, 2115–2124. [Google Scholar] [CrossRef]
- Archer, M.D.; Corke, C.C.; Harji, B.H. The electrochemical properties of metallic glass. Electrochim. Acta 1987, 32, 13–26. [Google Scholar] [CrossRef]
- Scully, J.R.; Gebert, A.; Payer, J.H. Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 2007, 22, 302–313. [Google Scholar] [CrossRef]
- Ma, H.; Shi, L.L.; Xu, J.; Li, Y.; Ma, E. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 2005, 87, 181915. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Inoue, A. Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm. Mater. Trans. 2007, 48, 3031–3033. [Google Scholar] [CrossRef]
- Zeng, Y.Q.; Inoue, A.; Nishiyama, N.; Chen, M.W. Remarkable effect of minor boron doping on the formation of the largest size Ni-rich bulk metallic glasses. Scr. Mater. 2009, 60, 925–928. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zou, Y.; Liu, P.; Lai, Z.G.; Wen, L.; Jin, Y. EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms. Electrochim. Acta 2022, 418, 140350. [Google Scholar] [CrossRef]
- Skaanvik, S.A.; Gateman, S.M. Probing passivity of corroding metals using scanning electrochemical probe microscopy. Electrochem. Sci. Adv. 2024, 4, 2300014. [Google Scholar] [CrossRef]
- Wang, T.E.; Ma, X.Q.; Gong, B.L.; Zhu, C.R.; Xue, P.Z.; Guo, L.L.; Tian, X.; Shen, X.X.; Min, Y.L.; Xu, Q.J.; et al. Bio-inspired Ti3C2Tx MXene composite coating for enhancing corrosion resistance of aluminum alloy in acidic environments. J. Colloid Interface Sci. 2024, 658, 865–878. [Google Scholar] [CrossRef]
- Poltronieri, C.; Brognara, A.; Bignoli, F.; Evertz, S.; Djemia, P.; Faurie, D.; Challali, F.; Li, C.; Belliard, L.; Dehm, G.; et al. Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations. Acta Mater. 2023, 258, 119226. [Google Scholar] [CrossRef]
- Cao, S.; Liu, G.Y.; Huang, J.K.; Yu, X.Q.; Luo, Y.M.; Fan, D. Molecular Dynamics Study of Crystallization Behavior in the Solid State of Zr-Cu Amorphous Alloys. Metals 2023, 13, 1571. [Google Scholar] [CrossRef]
- Liang, D.D.; Liu, X.D.; Zhou, Y.H.; Wei, Y.; Wei, X.S.; Xu, G.; Shen, J. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings. Acta Metall. Sin.-Engl. Lett. 2022, 35, 243–253. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, S.D.; Ma, A.L.; Hu, H.X.; Zheng, Y.G.; Yang, B.J.; Wang, J.Q. Thermally induced structure evolution on the corrosion behavior of Al-Ni-Y amorphous alloys. Corros. Sci. 2018, 144, 172–183. [Google Scholar] [CrossRef]
- Souza, C.A.C.; Ribeiro, D.V.; Kiminami, C.S. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. J. Non-Cryst. Solids 2016, 442, 56–66. [Google Scholar] [CrossRef]
- Qiu, Z.W.J.; Li, Z.K.; Fu, H.M.; Zhang, L.; Zhu, Z.W.; Zhang, H.W.; Wang, A.M.; Li, H.; Zhang, H.F. Effect of pH and NaF addition on corrosion of Zr-based bulk metallic glass in Na2SO4-containing solution. Intermetallics 2021, 129, 107034. [Google Scholar] [CrossRef]
- Li, J.W.; Yang, L.J.; Ma, H.R.; Jiang, K.M.; Chang, C.T.; Wang, J.Q.; Song, Z.L.; Wang, X.M.; Li, R.W. Improved corrosion resistance of novel Fe-based amorphous alloys. Mater. Des. 2016, 95, 225–230. [Google Scholar] [CrossRef]
- Tamilselvam, K.; Saini, J.S.; Xu, D.; Brabazon, D. Corrosion behavior of new rare-earth free Cu-based metallic glasses in NaCl solution of different molarity. J. Mater. Res. Technol. 2022, 16, 482–494. [Google Scholar] [CrossRef]
- Hertsyk, O.M.; Hula, T.H.; Yezerska, O.A.; Nosenko, V.K.; Korniy, S.A.; Tashak, M.S. The Influence of the Composition of Amorphous Alloys on Their Corrosion Resistance in Aggressive Environments of Different Nature. Mater. Sci. 2024, 59, 546–553. [Google Scholar] [CrossRef]
- Jin, J.; Ji, X.L.; Cao, S.; Zhu, W.W. Effect of Cryogenic Thermal Cycling on Tribocorrosion Performance of Fe-Based Bulk Amorphous Alloy in 3.5 Pct NaCl Solution. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2022, 53, 3404–3417. [Google Scholar] [CrossRef]
- Dhawan, A.; Sachdev, K.; RoychowdItury, S.; De, P.K.; Sharma, S.K. Potentiodynamic polarization studies on amorphous Zr46.75Ti8.25Cu7.5Ni1.0Be27.5, Zr65Cu17.5Ni10Al7.5, Zr67Ni33 and Ti60Ni40 in aqueous HNO3 solutions. J. Non-Cryst. Solids 2007, 353, 2619–2623. [Google Scholar] [CrossRef]
- Li, Z.Z.; Zhou, S.X.; Wang, Y.G.; Xiang, R.; Zhang, G.Q. Enhancement of the soft magnetic properties and improvement of the deformation ability of a ferromagnetic (Fe0.76Si0.09B0.1P0.05)99Nb1 bulk metallic glass. Mater. Lett. 2015, 148, 99–102. [Google Scholar] [CrossRef]
- Shin, S.S.; Kim, H.K.; Lee, J.C.; Park, I.M. Effect of Sub-Tg Annealing on the Corrosion Resistance of the Cu-Zr Amorphous Alloys. Acta Metall. Sin.-Engl. Lett. 2018, 31, 273–280. [Google Scholar] [CrossRef]
- Debnath, M.R.; Kim, D.H.; Fleury, E. Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase. Intermetallics 2012, 22, 255–259. [Google Scholar] [CrossRef]
- Bao, W.Z.; Xiang, T.; Chen, L.; Du, P.; Zhang, Z.W.; Xie, G.Q. Corrosion behavior of high-performance crystalline CuCrZr/amorphous CuZrAl composites in NaCl solution. J. Mater. Res. Technol. 2022, 21, 5004–5017. [Google Scholar] [CrossRef]
- Kawashima, A.; Ohmura, K.; Yokoyama, Y.; Inoue, A. The corrosion behaviour of Zr-based bulk metallic glasses in 0.5 M NaCl solution. Corros. Sci. 2011, 53, 2778–2784. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, S.L.; Huang, Y.; Wang, S.C. Corrosion Resistance of Fe-Based Bulk Amorphous Alloy with Sulfide Inclusion. In Advanced Functional Materials. CMC 2017; Springer: Singapore, 2018; pp. 309–318. [Google Scholar]
- Guennec, B.; Kabuchi, R.; Kuwahara, H.; Ueno, A. Analysis of Zr55Al10Cu30Ni5 bulk metallic glass pitting behavior in distilled water environment leading to fatigue-corrosion rupture. Int. J. Fatigue 2021, 143, 106026. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Yang, Y.X.; Liu, H.; Hou, S.X.; Zhang, Z.Y.; Ma, Z.S. Effects of Cr and Mo content on the microstructure and properties of Fe-based amorphous composite coatings by laser cladding. J. Laser Appl. 2024, 36, 32022. [Google Scholar] [CrossRef]
- Xu, D.D.; Zhou, B.L.; Wang, Q.Q.; Zhou, J.; Yang, W.M.; Yuan, C.C.; Xue, L.; Fan, X.D.; Ma, L.Q.; Shen, B.L. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys. Corros. Sci. 2018, 138, 20–27. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Chen, B.; Bo, W.J.; Zhou, Y.Z.; Geng, G.H. Effect of Zn on glass-forming capacity and corrosion resistance of Ca-based amorphous alloys. J. Non-Cryst. Solids 2022, 591, 121713. [Google Scholar] [CrossRef]
- Zhou, W.; Weng, W.P.; Hou, J.X. Glass-forming Ability and Corrosion Resistance of Zr-Cu-Al-Co Bulk Metallic Glass. J. Mater. Sci. Technol. 2016, 32, 349–354. [Google Scholar] [CrossRef]
- Yang, X.D.; Gao, M.; Liu, Y.H.; Li, J.L.; Huang, Y.; Wang, G.; Wang, J.Q.; Huo, J.T. Superior corrosion resistance of high-temperature Ir-Ni-Ta-(B) amorphous alloy in sulfuric acid solution. Corros. Sci. 2022, 200, 110227. [Google Scholar] [CrossRef]
- Wang, S.W.; Li, Y.H.; Wang, X.W.; Yamaura, S.; Zhang, W. Glass-forming ability, thermal properties, and corrosion resistance of Fe-based (Fe, Ni, Mo, Cr)-P-C-B metallic glasses. J. Non-Cryst. Solids 2017, 476, 75–80. [Google Scholar] [CrossRef]
- Wang, L.; Chao, Y.S. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution. Mater. Lett. 2012, 69, 76–78. [Google Scholar] [CrossRef]
- Zhang, J.W.; Chen, S.; Zhang, X.P.; Xiao, S.M.; Li, L.; Guo, S.F. Fe-based bulk metallic glass with high thermal stability and corrosion resistance. J. Non-Cryst. Solids 2024, 643, 123176. [Google Scholar] [CrossRef]
- Qiu, Z.W.J.; Li, Z.K.; Fu, H.M.; Zhang, H.W.; Zhu, Z.W.; Wang, A.M.; Li, H.; Zhang, L.; Zhang, H.F. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions. J. Mater. Sci. Technol. 2020, 46, 33–43. [Google Scholar] [CrossRef]
- Tang, J.L.; Wang, Y.Y.; Zhu, Q.H.; Chamas, M.; Wang, H.; Qiao, J.C.; Zhu, Y.Q.; Normand, B. Passivation Behavior of a Zr60Cu20Ni8Al7Hf3Ti2 Bulk Metallic Glass in Sulfuric Acid Solutions. Int. J. Electrochem. Sci. 2018, 13, 6913–6929. [Google Scholar] [CrossRef]
- Pourgashti, M.H.; Marzbanrad, E.; Ahmadi, E. Corrosion behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass in various aqueous solutions. Mater. Des. 2010, 31, 2676–2679. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, G.X.; Wang, T.T.; Shi, H.Q.; Tang, T.; Zhan, J.M.; Guo, X.N. Enhancement of mechanical properties and corrosion resistance in Zr-based bulk metallic glasses by nanocrystal precipitation. J. Alloys Compd. 2025, 1014, 178683. [Google Scholar] [CrossRef]
- Dhawan, A.; Roychowdhury, S.; De, P.K.; Sharma, S.K. Potentiodynamic polarization studies on bulk amorphous alloys and Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5. J. Non-Cryst. Solids 2005, 351, 951–955. [Google Scholar] [CrossRef]
- Song, Y.X.; Zhou, Y.T.; Liu, G.T.; Wang, T. Superior corrosion resistance of high-temperature annealing Cr–Co–Mo–Nb–B metallic glass in sodium chloride solution. J. Non-Cryst. Solids 2025, 665, 123620. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Wang, T. High stability and high corrosion resistance of a class of Co–Cr–Mo–Nb–B high-entropy metallic glasses. J. Mater. Res. Technol.-JMRT 2024, 30, 256–266. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.R.; Zhang, S.; Shi, Z.L.; Wei, C.; Ma, M.Z.; Liu, R.P. Corrosion behavior of Ti-based bulk amorphous alloys in acidic solutions. Trans. Nonferrous Met. Soc. China 2024, 34, 874–889. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Si, J.J.; Cai, Y.; Chen, X.H.; Hui, X.D. Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015, 642, 297–303. [Google Scholar] [CrossRef]
- Gu, J.L.; Yang, X.L.; Zhang, A.L.; Shao, Y.; Zhao, S.F.; Yao, K.F. Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance. J. Non-Cryst. Solids 2019, 512, 206–210. [Google Scholar] [CrossRef]
- Nair, A.; Prabhu, Y.; Mendonca, J.; Ryu, W.H.; Park, E.S.; Bhatt, J.; Vincent, S. An experimental case study on corrosion characterization of Cu46Zr40Ti8.5Al5.5 metallic glass. J. Non-Cryst. Solids 2019, 524, 119654. [Google Scholar] [CrossRef]
- Vincent, S.; Khan, A.F.; Murty, B.S.; Bhatt, J. Corrosion characterization on melt spun Cu60Zr20Ti20 metallic glass: An experimental case study. J. Non-Cryst. Solids 2013, 379, 48–53. [Google Scholar] [CrossRef]
- Malekan, M.; Rashidi, R.; Bozorg, M.; Birbilis, N. Tailoring the glass forming ability, mechanical properties and corrosion resistance of Cu–Zr–Al bulk metallic glasses by yttrium addition. Intermetallics 2023, 158, 107906. [Google Scholar] [CrossRef]
- Anuj, K.; Shashi Bhushan, A.; Bhaskar, M.; Jatin, B.; Ajeet, K.S. Corrosion Studies of Hf64Cu18Ni18 Metallic Glass in Acidic and Alkaline Media. Trans. Indian Inst. Met. 2021, 74, 949–956. [Google Scholar]
- Babilas, R.; Bajorek, A.; Simka, W.; Babilas, D. Study on corrosion behavior of Mg-based bulk metallic glasses in NaCl solution. Electrochim. Acta 2016, 209, 632–642. [Google Scholar] [CrossRef]
- Yong, L.; Zhang, T.B.; Jian, L. Electrochemical corrosion properties of Zr-and Ti-based bulk metallic glasses. Trans. Nonferrous Met. Soc. China 2011, 21, 552–557. [Google Scholar]
- Liu, Y.X.; Li, J.W.; Sun, Y.; He, A.N.; Dong, Y.Q.; Wang, Y. Effect of annealing temperature on magnetic properties and corrosion resistance of Fe75.8Si12B8Nb2.6Cu0.6P1 alloy. J. Mater. Res. Technol. -JmrT 2021, 15, 3880–3894. [Google Scholar] [CrossRef]
- Vasic, M.M.; Zák, T.; Pizúrová, N.; Simatovic, I.S.; Minic, D.M. Influence of Thermal Treatment on Microstructure and Corrosion Behavior of Amorphous Fe40Ni40B12Si8 Alloy. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2021, 52, 34–45. [Google Scholar] [CrossRef]
- Guo, S.F.; Zhang, H.J.; Liu, Z.; Chen, W.; Xie, S.F. Corrosion resistances of amorphous and crystalline Zr-based alloys in simulated seawater. Electrochem. Commun. 2012, 24, 39–42. [Google Scholar] [CrossRef]
- Chae, W.S.; Li, M.W.; Cao, Q.P.; Wang, X.D.; Ding, S.Q.; Zhang, D.X.; Jiang, J.Z.; Caron, A. Excellent corrosion and wear resistance of amorphous and crystalline ZrCoAl alloys. J. Alloys Compd. 2023, 968, 172055. [Google Scholar] [CrossRef]
- Gostin, P.F.; Oswald, S.; Schultz, L.; Gebert, A. Acid corrosion process of Fe-based bulk metallic glass. Corros. Sci. 2012, 62, 112–121. [Google Scholar] [CrossRef]
- Liu, S.S.; Xia, C.Q.; Yang, T.; Yang, Z.D.; Liu, N.; Li, Q. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity. Mater. Lett. 2020, 260, 126938. [Google Scholar]
- Hua, N.B.; Huang, Y.X.; Zheng, Z.G.; Huang, Y.T.; Su, M.Y.; Liao, Z.L.; Chen, W.Z. Tribological and corrosion behaviors of Mg56.5Cu27Ag5Dy11.5 bulk metallic glass in NaCl solution. J. Non-Cryst. Solids 2017, 459, 36–44. [Google Scholar]
- Wang, D.B.; Zhang, S.D.; Wang, Q.; Zhang, L.M.; Wang, J.Q. Underlying mechanism for the effects of composition and microstructure on the corrosion resistance of Al-based amorphous alloys: A review. Crit. Rev. Solid State Mater. Sci. 2024, 49, 1120–1152. [Google Scholar] [CrossRef]
- Xu, J.; Niu, J.Z.; Zhang, Z.T.; Ge, W.J.; Shang, C.Y.; Wang, Y. Effects of B Addition on Glass Formation, Mechanical Properties and Corrosion Resistance of the Zr66.7-xNi33.3Bx (x=0, 1, 3, and 5 at.%) Metallic Glasses. JOM 2016, 68, 682–691. [Google Scholar] [CrossRef]
- Liang, D.D.; Tseng, J.C.; Liu, X.D.; Cai, Y.F.; Xu, G.; Shen, J. Investigation of the Structural Heterogeneity and Corrosion Performance of the Annealed Fe-Based Metallic Glasses. Materials 2021, 14, 929. [Google Scholar] [CrossRef]
- Si, J.J.; Chen, X.H.; Cai, Y.H.; Wu, Y.D.; Wang, T.; Hui, X.H. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions. Corros. Sci. 2016, 107, 123–132. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.R.; Zhang, S.; Shi, Z.L.; Wei, C.; Ma, M.Z.; Liu, R.P. Effect of Cu content on the corrosion behavior of Ti-based bulk amorphous alloys in HCl solution. Mater. Lett. 2023, 337, 133742. [Google Scholar] [CrossRef]
- Babilas, R.; Bajorek, A.; Włodarczyk, P.; Łoński, W.; Szyba, D.; Babilas, D. Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer’s solution. Mater. Chem. Phys. 2019, 226, 51–58. [Google Scholar] [CrossRef]
- Vasic, M.M.; Simatovic, I.S.; Radovic, L.; Minic, D.M. Influence of microstructure of composite amorphous/nanocrystalline Fe72Ni8Si10B10 alloy on the corrosion behavior in various environments. Corros. Sci. 2022, 204, 110403. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.S.; Wang, X.H.; Yang, T.; Dong, C.; Hu, J.T.; Jiang, Y.Q. Mechanical and corrosion properties of Ti-Ni-Cu-Zr metallic glass matrix composites. J. Alloys Compd. 2017, 727, 1344–1350. [Google Scholar] [CrossRef]
- Eckert, J.; Das, J.; Pauly, S.; Duhamel, C. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 2007, 22, 285–301. [Google Scholar] [CrossRef]
- Guo, W.; Kato, H.; Yamada, R.; Saida, J. Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method. J. Alloys Compd. 2017, 707, 332–336. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jin, Z.S.; Ma, X.Z.; Zhang, Z.P.; Zhong, H.; Ma, M.Z.; Zhang, X.Y.; Li, G.; Liu, R.P. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites. J. Alloys Compd. 2018, 750, 757–764. [Google Scholar] [CrossRef]
- Yang, F.; Tian, H.F.; Lan, A.D.; Zhou, H.F.; Wang, B.C.; Yang, H.J.; Qiao, J.W. Corrosion behavior of Ti-based in situ dendrite-reinforced metallic glass matrix composites in various solutions. Metall. Mater. Trans. A 2015, 46, 2399–2403. [Google Scholar] [CrossRef]
- Tian, H.F.; Lan, A.D.; Wang, Y.S.; Yang, H.J.; Pan, S.P.; Qiao, J.W. Corrosion behavior of in situ dendrite-reinforced Zr-based metallic glass matrix composites in NaCl solutions of varied concentrations. Mater. Chem. Phys. 2015, 162, 326–331. [Google Scholar] [CrossRef]
- Qiao, J.W.; Fan, J.; Yang, F.; Shi, X.H.; Yang, H.J.; Lan, A.D. The corrosion behavior of Ti-based metallic glass matrix composites in the H2SO4 solution. Metals 2018, 8, 52. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, X.; Lv, J.W.; Wang, F.L.; Liu, S.G.; Wan, B.; Ma, M.Z. The influence of dendrite size on corrosion properties of Ti43. 2Zr29. 8Cu6. 7Nb4Be16.3 amorphous matrix composites in NaCl solution. J. Non-Cryst. Solids 2021, 557, 120576. [Google Scholar] [CrossRef]
- Xu, K.K.; Lan, A.D.; Qiao, J.W.; Yang, H.J.; Han, P.D.; Liaw, P.K. Corrosion behaviors and mechanisms of in-situ Ti-based MGMCs in chloride-containing and chloride-free solutions. Intermetallics 2019, 105, 179–186. [Google Scholar] [CrossRef]
- Wang, B.; Xu, K.K.; Shi, X.H.; Zhang, M.; Qiao, J.W.; Gao, C.H.; Wu, Y.C. Electrochemical and chemical corrosion behaviors of the in-situ Zr-based metallic glass matrix composites in chloride-containing solutions. J. Alloys Compd. 2019, 770, 679–685. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, Z.P.; Jin, Z.S.; Sun, W.C.; Xia, C.Q.; Ma, M.Z.; Zhang, X.Y.; Li, G.; Liu, R.P. A study on the corrosion behavior of the in-situ Ti-based bulk metallic glass matrix composites in acid solutions. J. Alloys Compd. 2019, 782, 927–935. [Google Scholar] [CrossRef]
- Lin, D.; Shang, J.; Zheng, P. Corrosion properties and mechanism of Ti43Zr27Mo5Cu10Be15 amorphous composites in various conditions. Mater. Res. Express 2024, 11, 055201. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Zhang, M.; Guo, R.P.; Wang, X.J.; Qiao, J.W.; Wang, Z.H. Corrosion Behavior of In-situ Zr-Based Metallic Glass Matrix Composites in Aqueous Environments. J. Mater. Eng. Perform. 2024, 33, 274–282. [Google Scholar] [CrossRef]
- Tian, H.F.; Qiao, J.W.; Yang, H.J.; Wang, Y.S.; Liaw, P.K.; Lan, A.D. The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media. Appl. Surf. Sci. 2016, 363, 37–43. [Google Scholar] [CrossRef]
- Yang, F.; Guo, S.f.; Lan, A.D.; Yang, H.J.; Zhou, H.F. Corrosion behavior of Fe-based bulk metallic glass and in-situ dendrite-reinforced metallic glass matrix composites in acid solution. J. Iron Steel Res. Int. 2016, 23, 1200–1205. [Google Scholar] [CrossRef]
- Lu, W.B.; He, M.F.; Yu, D.; Xie, X.M.; Wang, H.; Wang, S.; Yuan, C.G.; Chen, A.Y. Ductile behavior and excellent corrosion resistance of Mg-Zn-Yb-Ag metallic glasses. Mater. Des. 2021, 210, 110027. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution. Corros. Sci. 2018, 136, 352–365. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, H.X.; Zhang, X.F.; Yi, S. Effects of Cr contents in Fe-based bulk metallic glasses on the glass forming ability and the corrosion resistance. Mater. Chem. Phys. 2009, 113, 878–883. [Google Scholar] [CrossRef]
- Zohdi, H.; Shahverdi, H.; Hadavi, S. Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer’s solution for biomedical applications. Electrochem. Commun. 2011, 13, 840–843. [Google Scholar] [CrossRef]
- Long, Z.L.; Chang, C.T.; Ding, Y.H.; Shao, Y.; Zhang, P.; Shen, B.L.; Inoue, A. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)–B–Si–Nb bulk glassy alloys in aqueous electrolytes. J. Non-Cryst. Solids 2008, 354, 4609–4613. [Google Scholar] [CrossRef]
- Iqbal, A.; Iqbal, A.; Moskal, G.; Yasir, M.; Al-Mansour, A.I.; Khan, M.A.; Alam, S.; Shahbaz, M.; Zia, A.; Ejaz, A. Long-term potentiodynamic testing and tribometric properties of amorphous alloy coatings under saline environment. Molecules 2022, 27, 1421. [Google Scholar] [CrossRef]
- Zhang, X.P.; Lai, L.M.; Xiao, S.M.; Zhang, H.J.; Zhang, F.F.; Li, N.; Guo, S.F. Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass. Intermetallics 2022, 143, 107485. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, S.D.; Ma, A.L.; Umoh, A.J.; Hu, H.X.; Zheng, Y.G.; Yang, B.J.; Wang, J.Q. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution. J. Mater. Sci. Technol. 2019, 35, 1378–1387. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Cui, J.; Pan, S.; Emori, W.; Wang, J. Clarifying the alloying effects of La and Ce on the pitting corrosion behaviour of Al-based metallic glasses. Corros. Sci. 2024, 230, 111925. [Google Scholar] [CrossRef]
- Yu, L.S.; Tang, J.L.; Wang, H.; Wang, Y.Y.; Qiao, J.C.; Apreutesei, M.; Normand, B. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10) 100-xYx (x= 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid. Corros. Sci. 2019, 150, 42–53. [Google Scholar] [CrossRef]
- Tao, P.J.; He, H.J.; Chen, Y.G.; Long, Z.Y.; Zhang, W.J.; Yang, Y.Z. Thermodynamics and corrosion properties of nitrogen doped zirconium-based bulk metallic glasses. Intermetallics 2023, 159, 107913. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.B.; Pang, S.J.; Zheng, Y.G.; Li, Y. Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5 wt% NaCl solution. Corros. Sci. 2021, 192, 109867. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.B.; Zheng, Y.G.; Li, Y. Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5 M H2SO4 and 0.5 M NaOH solutions. Mater. Lett. 2022, 330, 133231. [Google Scholar] [CrossRef]
- Panahi, S.L.; Bruna, P.; Pineda, E. Effect of Si and B on the Electrochemical Behavior of FeCoNiCr-Based High-Entropy Amorphous Alloys. Materials 2022, 15, 8897. [Google Scholar] [CrossRef]
- Yu, X.Y.; Xiao, Z.; Yu, Q.; Li, Z.; Lei, Q.; Dai, J. Effect of Al on Corrosion Behavior of Imitation-Gold Cu-Zn-Ni-Sn Alloys in 3.5 wt.% NaCl solution. JOM 2021, 73, 589–599. [Google Scholar] [CrossRef]
- Xu, Y.; Hong, Y.; Shi, H.Q.; Chen, J.J.; Tang, T.; Li, M.M.; Zhan, J.M. Improved mechanical properties and corrosion resistance of Zr-Cu-Al-Ni-Ti bulk metallic glasses by Co addition. J. Non-Cryst. Solids 2024, 632, 122937. [Google Scholar] [CrossRef]
- Qiu, Z.W.J.; Fu, H.M.; Zhang, H.W.; Li, H.; Li, Z.K.; Zhang, L.; Zhu, Z.W.; Wang, A.M.; Zhang, H.F. Effects of Ti addition on corrosion behavior of Zr-based metallic glass in chloride medium. J. Iron Steel Res. Int. 2018, 25, 650–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhao, X.Y.; Ma, L.Q. Enhanced chloride ion corrosion resistance of Zr-based bulk metallic glasses with cobalt substitution. J. Non-Cryst. Solids 2018, 496, 18–23. [Google Scholar] [CrossRef]
- Dan, Z.H.; Takenaka, K.; Zhang, Y.; Unami, S.; Takeuchi, A.; Hara, N.; Makino, A. Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys. J. Non-Cryst. Solids 2014, 402, 36–43. [Google Scholar] [CrossRef]
- Xia, C.Q.; Li, X.J.; Liu, Y.W.; Song, T.S.; Liu, S.G.; Chen, B.H.; Yang, T.; Li, Q. Effect of Co content on the microstructure, mechanical properties and corrosion behavior of Zr alloys. Mater. Charact. 2023, 203, 113067. [Google Scholar] [CrossRef]
- Soumen, M.; Sivakumar, B.; Yashabanta, N.S.; Nil Ratan, B.; Partha, C.; Ansu, J.K. Electrochemical Behavior of Cu60Zr25Ti15 Bulk Metallic Glass with the Addition of Nb and Mo. J. Mater. Eng. Perform. 2019, 28, 6874–6884. [Google Scholar]
- Shi, H.Q.; Zhou, H.; Zhou, Z.H.; Ding, Y.; Liu, W.J.; Ji, J. Improved mechanical properties and corrosion resistance of Zr-Cu-Al-Ni-Ti bulk metallic glass by Fe substitution for Ni. J. Non-Cryst. Solids 2022, 576, 121246. [Google Scholar] [CrossRef]
- Zhang, C.W.; Li, Q.; Xie, L.; Zhang, G.; Mu, B.X.; Chang, C.T.; Li, H.X.; Ma, X. Development of novel Fe-based bulk metallic glasses with excellent wear and corrosion resistance by adjusting the Cr and Mo contents. Intermetallics 2023, 153, 107801. [Google Scholar] [CrossRef]
- Hu, L.W.; Li, F.C.; Xie, W.J.; Wang, C.; Li, M.X.; Wang, G.; Liu, Y.H. Combinatorial investigation on corrosion resistance of Ir-Ni-Ta alloys. Corros. Sci. 2024, 234, 112153. [Google Scholar] [CrossRef]
- Gebert, A.; Kuehn, U.; Baunack, S.; Mattern, N.; Schultz, L. Pitting corrosion of Zirconium-based bulk glass-matrix composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 415, 242–249. [Google Scholar] [CrossRef]
- Pi, J.H.; Pan, Y.; Wu, J.L.; He, X.C. Influence of Minor Addition of In on Corrosion Resistance of Cu-Based Bulk Metallic Glasses in 3.5% NaCl Solution. Rare Met. Mater. Eng. 2014, 43, 32–35. [Google Scholar]
- Wang, G.; Guo, C.X.; Pang, S.J. Thermal stability, mechanical properties and corrosion behavior of a Mg-Cu-Ag-Gd metallic glass with Nd addition. Rare Met. 2017, 36, 183–187. [Google Scholar] [CrossRef]
- Xu, K.K.; Lan, A.D.; Yang, H.J.; Han, P.D.; Qiao, J.W. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions. Appl. Surf. Sci. 2017, 423, 90–99. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, W.; Asami, K.; Kimura, H.; Wang, X.M.; Inoue, A. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 2006, 54, 3713–3719. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.J.; Zhou, B.J.; Xue, P.; Fan, H.B.; Sun, J.F. Electrochemical and XPS studies of a Nb-containing Ti-based glass-forming alloy system in H2SO4 solution. Electrochem. Commun. 2015, 60, 139–143. [Google Scholar] [CrossRef]
- Yang, Y.J.; Fan, X.D.; Wang, F.L.; Qi, H.N.; Yue, Y.; Ma, M.Z.; Zhang, X.Y.; Li, G.; Liu, R.P. Effect of Nb content on corrosion behavior of Ti-based bulk metallic glass composites in different solutions. Appl. Surf. Sci. 2019, 471, 108–117. [Google Scholar] [CrossRef]
- Debnath, M.R.; Chang, H.J.; Fleury, E. Effect of group 5 elements on the formation and corrosion behavior of Ti-based BMG matrix composites reinforced by icosahedral quasicrystalline phase. J. Alloys Compd. 2014, 612, 134–142. [Google Scholar] [CrossRef]
- Zhou, M.; Hagos, K.; Huang, H.Z.; Yang, M.; Ma, L.Q. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing. J. Non-Cryst. Solids 2016, 452, 50–56. [Google Scholar] [CrossRef]
- Coimbrão, D.D.; Zepon, G.; Koga, G.Y.; Pérez, D.A.G.; Paes de Almeida, F.H.; Roche, V.; Leprêtre, J.C.; Jorge, A.M.; Kiminami, C.S.; Bolfarini, C.; et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. J. Alloys Compd. 2020, 826, 154123. [Google Scholar] [CrossRef]
- Hua, N.B.; Liao, Z.L.; Wang, Q.T.; Zhang, L.; Ye, Y.X.; Brechtl, J.; Liaw, P.K. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass. J. Non-Cryst. Solids 2019, 529, 119782. [Google Scholar] [CrossRef]
- Shi, H.Q.; Tang, C.C.; Zhao, X.Y.; Ding, Y.; Ma, L.Q.; Shen, X.D. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass. J. Non-Cryst. Solids 2020, 537, 120013. [Google Scholar] [CrossRef]
- Berger, J.E.; Jorge, A.M., Jr.; Koga, G.Y.; Roche, V.; Kiminami, C.S.; Bolfarini, C.; Botta, W.J. Influence of chromium concentration and partial crystallization on the corrosion resistance of FeCrNiB amorphous alloys. Mater. Charact. 2021, 179, 111369. [Google Scholar] [CrossRef]
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R-Rep. 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Zhang, X.L.; Sun, J.L.; Luo, J.; Wang, B.B.; Cheng, J.L. Mechanical and corrosion behaviour of in situ intermetallic phases reinforced Mg-based glass composite. Mater. Sci. Technol. 2017, 33, 1186–1191. [Google Scholar] [CrossRef]
- Lin, J.G.; Xu, J.; Wang, W.W.; Li, W. Electrochemical behavior of partially crystallized amorphous Al86Ni9La5 alloys. Mater. Sci. Eng. B 2010, 176, 49–52. [Google Scholar] [CrossRef]
- Gu, Y.D.; Zhou, Z.; Niu, S.Z.; Ge, W.J.; Wang, Y. The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites. J. Non-Cryst. Solids 2013, 380, 135–140. [Google Scholar] [CrossRef]
- Kasturi, H.; Paul, T.; Biswas, S.; Harimkar, S.P. Effect of nickel reinforcement on electrochemical and wear behaviour of spark plasma sintered Fe-based metallic glass composites. Mater. Res. Express 2019, 6, 25206. [Google Scholar] [CrossRef]
- Ge, W.J.; Li, B.Y.; Axinte, E.; Zhang, Z.T.; Shang, C.Y.; Yan, W. Crystallization and Corrosion Resistance in Different Aqueous Solutions of Zr50.7Ni28Cu9Al12.3 Amorphous Alloy and Its Crystallization Counterparts. JOM 2017, 69, 776–783. [Google Scholar] [CrossRef]
- Zhan, Y.Y.; Pan, J.; Jiang, X.L.; Liu, X.C.; Dong, Y.R.; Xiao, X.Y. Microstructure evolution and magnetic properties of the Nd9Fe81–xTi4C2Nb4Bx (x =11, 13, 15) bulk magnets prepared by copper mold suction casting. J. Rare Earths 2015, 33, 1081–1086. [Google Scholar] [CrossRef]
- Nagireddi, S.; Babu, D.A.; Srinivasarao, B.; Majumdar, B. Processing of Hf based bulk metallic glass through Spark Plasma Sintering (SPS) process. J. Alloys Compd. 2021, 876, 160057. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zhang, Y.; Chen, X.H.; Chen, G.L. Bulk metallic glass rings prepared by a modified water quenching method. Int. J. Miner. Metall. Mater. 2009, 16, 108–111. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yuan, G.; Zhang, Y.X.; Liu, C.Y.; Fang, F.; Wang, G.D.; Misra, R.D.K. Cu-based amorphous alloy plates fabricated via twin-roll strip casting. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2021, 828, 142123. [Google Scholar] [CrossRef]
- Ríos, C.T.; Souza, J.S.d.; Antunes, R.A. Preparation and characterization of the structure and corrosion behavior of wedge mold cast Fe43.2Co28.8B19.2Si4.8Nb4 bulk amorphous alloy. J. Alloys Compd. 2016, 682, 412–417. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhuang, C.C.; Liu, X.; Chen, L.; Zhu, Y.; Zhang, X.; Gao, M.Q.; Li, H.; Shi, Z.L.; Liang, S.X.; et al. Study on the corrosion properties of Ti41.4Zr28.52Cu6.44Nb8.0Be15.64 metallic glass-based composites in binary acid-salt solutions. J. Alloys Compd. 2025, 1017, 179133. [Google Scholar] [CrossRef]
- Chang, Z.X.; Wang, W.X.; Ge, Y.Q.; Zhou, J.; Dong, P.; Cui, Z.Q. Micro-mechanical properties and corrosion resistance of Zr55Cu30Al10Ni5 bulk metallic glass fabricated by spark plasma sintering. J. Alloys Compd. 2018, 780, 220–227. [Google Scholar] [CrossRef]
- Cai, A.H.; Zhou, G.; Li, P.W.; Ding, D.W.; An, Q.; Li, Y.X.; Yang, Q.; Mao, H. Mechanical, wetting and corrosion properties of a Zr-based amorphous alloy composite consolidated by spark plasma sintering. J. Non-Cryst. Solids 2023, 621, 122648. [Google Scholar] [CrossRef]
- Zeng, W.P.; Chen, Y.H.; Li, Q.; Li, H.; Mu, B.X.; Ye, J.K.; Chang, C.T. Ductile Ni-based bulk metallic glasses at room temperature. J. Mater. Res. Technol. 2023, 26, 2432–2442. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhu, Y.P.; Zhang, C.Y.; Zhang, Y.; Kang, J.; Li, Z.G.; Yuan, G. Corrosion behavior of Zr55Cu30Al10Ni5 amorphous alloy produced by two-roll strip casting in aqueous environments. J. Mater. Sci. 2024, 59, 19693–19706. [Google Scholar] [CrossRef]
- Jabed, A.; Kumar, G. Effect of cryogenic cycling and above-Tg annealing on the corrosion behavior of Zr-Cu-Ti-Be metallic glass. J. Non-Cryst. Solids 2023, 608, 122260. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Ding, G.Z.; Wang, Y.J.; Yu, M.M.; Liu, F.; Sun, Y.W.; Zhu, K.J.; Zhao, X.J.; Liu, L. Hydrophobic and corrosion resistance properties of the electrochemically etched Zr-based bulk metallic glasses after annealing and cryogenic thermal cycling treatment. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 635, 128107. [Google Scholar] [CrossRef]
- Tang, J.L.; Yu, L.S.; Qiao, J.C.; Wang, Y.Y.; Wang, H.; Duan, M.; Chamas, M. Effect of atomic mobility on the electrochemical properties of a Zr58Nb3Cu16Ni13Al10 bulk metallic glass. Electrochim. Acta 2018, 267, 222–233. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, H.J.; Zhou, W.H.; Wang, Z.B.; Sun, J.; Li, Y. Effect of enthalpy relaxation rejuvenation on microstructure and corrosion resistance of a Zr-based bulk metallic glass. J. Non-Cryst. Solids 2024, 646, 123259. [Google Scholar] [CrossRef]
- Zhai, S.C.; Wang, W.; Wang, Y. Effects of Pre-compression on the Microstructure and Corrosion Resistance of Cu50Zr50 Bulk Metallic Glass Matrix Composites. In Advanced Functional Materials. CMC 2017; Springer: Singapore, 2018; pp. 275–283. [Google Scholar]
- Chen, Z.; Wang, D.P.; Wang, S.; Geng, Y.X.; Guo, Y.X.; Wu, Y.C.; Liu, Z.G.; Zhang, Y.Y.; Wang, Y.X. Enhanced pitting corrosion resistance of a Zr-based metallic glass by ultraviolet light irradiation. J. Iron Steel Res. Int. 2023, 30, 1642–1649. [Google Scholar] [CrossRef]
- Li, K.; Li, B.H.; Du, P.; Xiang, T.; Yang, X.X.; Xie, G.Q. Effect of powder size on strength and corrosion behavior of Mg66Zn30Ca4 bulk metallic glass. J. Alloys Compd. 2021, 897, 163219. [Google Scholar] [CrossRef]
- Hadady, H.; Alam, A.; Khurana, I.; Mutreja, I.; Kumar, D.; Shankar, M.R.; Dua, R. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. J. Mater. Sci.-Mater. Med. 2024, 35, 31. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.F.; Wan, B.B.; Jin, S.X.; Chen, K.; Su, F.H. Extremely improved the corrosion resistance and anti-wear behavior of aluminum alloy in 3.5% NaCl solution via amorphous CrAlN coating protection. Corros. Sci. 2024, 230, 111952. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, Y.T.; Song, Y.X.; Chen, X.M.; Liu, W. Preparation and properties of ultra-high hardness Co-Cr-Mo-Nb-B high-temperature amorphous alloy coating. Surf. Coat. Technol. 2024, 494, 131474. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, J.Z.; Luo, F.Y.; Zhao, Y.; Shi, W.Q. Fe-based amorphous reinforced CoCrFeNi HEA composite coating prepared by laser cladding. J. Mater. Res. Technol. 2024, 31, 1912–1923. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, L.W.; Lin, B.; Wang, Y.Y.; Tang, J.L.; Qi, L.; Liu, X. Significant improvement of corrosion resistance in laser cladded Zr-based metallic glass matrix composite coatings by laser remelting. Corros. Sci. 2024, 238, 112360. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.Y.; Zheng, Z.G.; Zuo, J.L.; Zeng, D.C.; Qiu, Z.G.; Xiao, M.; Chen, J.W.; Yu, H.Y. The degradation performance of the Fe78Si13B9 and (FeCoNi)78Si13B9 high-entropy amorphous alloy ribbons. J. Alloys Compd. 2019, 815, 152347. [Google Scholar]
- Wang, P.C.; Yu, J.G.; Zhang, Q.X. Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface. Comput. Mater. Sci. 2020, 184, 109915. [Google Scholar] [CrossRef]
- Gouda, M.K.; Salman, S.A.; Ebied, S.; Ashmawy, A.M.; Gepreel, M.A.H.; Chiba, A. Biocompatibility and corrosion resistance of low-cost Ti-14Mn-Zr alloys. J. Mater. Res. 2021, 36, 4883–4893. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B. Influence of the micro-addition of Mo on glass forming ability and corrosion resistance of Cu-based bulk metallic glasses. Electrochim. Acta 2006, 51, 3724–3730. [Google Scholar] [CrossRef]
- Ang, A.S.M.; Murty, B.S.; Yeh, J.W.; Munroe, P.; Berndt, C.C. High Entropy Alloy and Bulk Metallic Glass Coatings. J. Therm. Spray Technol. 2022, 31, 920–922. [Google Scholar] [CrossRef]
- Liens, A.; Ter-Ovanessian, B.; Courtois, N.; Fabregue, D.; Wada, T.; Kato, H.; Chevalier, J. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses. Corros. Sci. 2020, 177, 108854. [Google Scholar] [CrossRef]
- Kong, F.L.; Inoue, A.; Wang, F.; Chang, C.T. The Influence of Boron and Carbon Addition on the Glass Formation and Mechanical Properties of High Entropy (Fe, Co, Ni, Cr, Mo)-(B, C) Glassy Alloys. Coatings 2024, 14, 118. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Liu, F.; Yu, L.; Wang, Y.X. Effect of C addition on the corrosion properties of amorphous Fe-based amorphous alloys. Int. J. Mod. Phys. B 2019, 33, 1940006. [Google Scholar] [CrossRef]
- Chen, K.; Qing, B.; Wang, Q.; Wang, G. Structure and toughness modulation of a Zr52.5Cu17.9Ni14.6 Al10Ti5 metallic glass by surface mechanical attrition treatment. Chin. J. Theor. Appl. Mech. 2020, 52, 400–407. [Google Scholar]
- Huang, B.; Zhang, C.; Zhang, G.; Liao, H.L. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review. Surf. Coat. Technol. 2019, 377, 124896. [Google Scholar] [CrossRef]
- Chen, D.H.; Li, M.L.; Yue, X.Q.; Ji, Y.C.; Xu, Y.T.; Pan, J.S.; Dong, C.F. Correlation between pitting susceptibility and surface acidity, point of zero charge of passive film on aluminum: Influence of alloying elements. Corros. Sci. 2024, 227, 111726. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Al-Thani, N. A review of passivity breakdown on metal surfaces: Influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emergent Mater. 2021, 4, 1187–1203. [Google Scholar] [CrossRef]
- Rossmeisl, J. Measuring the potential of zero charge. Nat. Mater. 2023, 22, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, Z.R.; Li, D.Y. Electronic and strain-elimination effects of solute-vacancy interaction in molybdenum. J. Appl. Phys. 2023, 133, 125106. [Google Scholar] [CrossRef]
- Zhang, P.B.; Jun, Z.J.; Ting, Z.T.; Huan, L.R.; Fei, Z.P.; Ming, C.J. A review of solute-point defect interactions in vanadium and its alloys: First-principles modeling and simulation. Tungsten 2021, 3, 38–57. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, Y.; Wu, Y.X.; Zhang, S.Y.; Mingers, A.M.; Ponge, D.; Gault, B.; Rohwerder, M.; Raabe, D. How solute atoms control aqueous corrosion of Al-alloys. Nat. Commun. 2024, 15, 561. [Google Scholar] [CrossRef]
- Yin, Y.T.; Rumman, R.; Chambers, B.A.; Liu, M.; Jacob, R.; Belusko, M.; Bruno, F.; Lewis, D.A.; Andersson, G.G. Corrosion interface formation in thermally cycled stainless steel 316 with high-temperature phase change material. Sol. Energy Mater. Sol. Cells 2021, 225, 111062. [Google Scholar] [CrossRef]
- Liu, R.H.; Han, X.Y.; Wang, F.Y.; Tan, B.M.; Zhang, N.N.; Li, W.; Zhang, S.H. Enhancing performance in copper corrosion inhibitors through molecular structural modifications: Mechanisms, design, and future pathways. J. Mol. Liq. 2024, 394, 123750. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Huang, Y.F.; Zhou, J.; Zhang, L.; Xing, Z.G.; Wang, H.D.; Shan, D.B. Effect of Fe content on the tribological properties of Ni60 coatings applied by pulsed magnetic field assisted supersonic plasma spraying. Mater. Charact. 2022, 185, 111771. [Google Scholar] [CrossRef]
- Yuli Panca, A.; Fathan, B.; Agus Geter Edy, S. Selection of Inhibitor and Recent Advances in Enhancing Corrosion Prevention. Defect Diffus. Forum/Diffus. Defect Data Solid State data. Part A Defect Diffus. Forum 2024, 431, 69–76. [Google Scholar]
- Xie, C.Y.; Milosev, I.; Renner, F.U.; Kokalj, A.; Bruna, P.; Crespo, D. Corrosion resistance of crystalline and amorphous CuZr alloys in NaCl aqueous environment and effect of corrosion inhibitors. J. Alloys Compd. 2021, 879, 160464. [Google Scholar] [CrossRef]















| Alloys | Corroding Solution | Ipass (μA/cm2) | Ecorr (mV) | Icorr (μA/cm2) |
|---|---|---|---|---|
| Ir35Ni25Ta40 [95] | 0.5 M H2SO4 | 0.403 ± 0.001 | −204 ± 0.1 | - |
| 1 M H2SO4 | 0.579 ± 0.002 | −163 ± 0.3 | - | |
| 4 M H2SO4 | 20.08 ± 0.04 | 121 ± 0.1 | - | |
| Ir35Ni20Ta40B5 [95] | 0.5 M H2SO4 | 0.098 ± 0.002 | −200 ± 0.1 | - |
| 1 M H2SO4 | 0.135 ± 0.001 | −183 ± 0.1 | - | |
| 4 M H2SO4 | 4.63 ± 1.64 | −134 ± 0.2 | - | |
| Fe80P12C4B4 [96] | 0.5 M H2SO4 | - | −312 ± 7 | 779 ± 15 |
| Fe70Cr7Mo3P12C4B4 [96] | 0.5 M H2SO4 | - | −13 ± 9 | 1.76 ± 0.23 |
| Fe55Ni15Cr7Mo3P12C4B4 [96] | 0.5 M H2SO4 | - | 183 ± 7 | 0.481 ± 0.011 |
| Fe50Ni20Cr7Mo3P12C4B4 [96] | 0.5 M H2SO4 | - | 209 ± 11 | 0.456 ± 0.019 |
| Fe41Co7Cr15Mo14C15B6Y2 [97] | 3.5% NaCl | - | −329 | 0.155 |
| Fe66.6C7.1Si3.3B5.5P8.7Cr2.3Mo2.5Al2.0Co1.0S1.0 [89] | 1 mol/L HCl | 382.8 | −280 | 111.2 |
| 1 mol/L H2SO4 | 300.1 | −310 | 232 | |
| 1 mol/L NaCl | 489.8 | −430 | 50.1 | |
| Fe44Cr23W10C13.5B7.5Y2 [98] | 3.5% NaCl | - | −380 | 0.84 |
| Fe48Cr15Mo14C15B6Y2 [98] | 3.5% NaCl | - | −480 | 4.47 |
| Zr52Al10Ni6Cu32 [99] | 0.1 mol/L NaCl | - | −291 ± 43 | 169 ± 8 |
| 0.1 mol/L NaF | - | −225 ± 29 | 292.1 ± 19 | |
| Zr60Cu20Ni8Al7Hf3Ti2 [100] | 0.1 M H2SO4 | 2.498 | −605 | 3170 |
| Zr41.2Ti13.8Ni10Cu12.5Be22.5 [101] | 1 M H2SO4 | - | −491 | 0.5393 |
| Zr61Cu18Al9Ni7Ti5 [102] | PBS | - | −438 | 0.027 |
| Zr46.75Ti8.25Cu7.5Ni10Be27.5 [103] | 0.5 M H2SO4 | - | 10 | 10 |
| Cr26Co26Mo26Nb7B15 [104] | 3.5% NaCl | - | −210 | 428 |
| Co26Cr26Mo26Nb7B15 [105] | 1 mol/L HCl | - | 0.64 | 2.96 |
| Ti34.3Zr31.5Cu5Ni5.5Be23.7 [106] | 0.5 mol/L H2SO4 | - | −45.36 ± 13.6 | 0.0561 ± 0.0258 |
| Ti34.3Zr31.5Cu5Ni5.5Be23.7 [106] | 5% HCl | - | −307.9 ± 8.5 | 0.034 ± 0.007 |
| Ti32.8Zr30.2Cu9Fe5.3Be22.7 [106] | 5% HCl | - | −308 ± 7.1 | 0.043 ± 0.008 |
| Ti46Cu27.5Zr11.5Co7Sn3Si1Ag4 [107] | 0.9% NaCl | - | −151.7 | 201 |
| Ti55Zr15Be20Ni10 [108] | 3.5% NaCl | 0.66 | −430 ± 34 | - |
| Cu46Zr40Ti8.5Al5.5 [109] | 0.1 mol/L HCl | - | −320 ± 10 | 0.0247 ± 0.001 |
| 0.1 mol/L NaCl | - | −260 ± 10 | 0.0013 ± 0.001 | |
| Cu60Zr20Ti20 [110] | 0.1 mol/L NaCl | - | −222.8 | 0.16612 |
| Cu50Zr43Al7 [111] | 0.6 mol/L NaCl | - | −235 | 12 |
| (Cu50Zr43Al7)96Y4 [111] | 0.6 mol/L NaCl | - | −556 | 1.5 |
| Hf64Cu18Ni18 [112] | 0.5 mol/L NaOH | - | −388 | 0.06 |
| 0.5 mol/L HCl | - | −327 | 2.75 | |
| Mg60Cu20Y10Ni5 [113] | 5% NaCl | - | −939 ± 30 | 78 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qian, Y.; Wang, Z.; Tong, Q.; Wang, M.; Pan, Q.; Yu, Y. Research Progress on the Corrosion Behavior of Metallic Glass and Its Composites. Metals 2025, 15, 1345. https://doi.org/10.3390/met15121345
Li L, Qian Y, Wang Z, Tong Q, Wang M, Pan Q, Yu Y. Research Progress on the Corrosion Behavior of Metallic Glass and Its Composites. Metals. 2025; 15(12):1345. https://doi.org/10.3390/met15121345
Chicago/Turabian StyleLi, Liyuan, Yi Qian, Zihao Wang, Qing Tong, Miqi Wang, Qiuyi Pan, and Yuan Yu. 2025. "Research Progress on the Corrosion Behavior of Metallic Glass and Its Composites" Metals 15, no. 12: 1345. https://doi.org/10.3390/met15121345
APA StyleLi, L., Qian, Y., Wang, Z., Tong, Q., Wang, M., Pan, Q., & Yu, Y. (2025). Research Progress on the Corrosion Behavior of Metallic Glass and Its Composites. Metals, 15(12), 1345. https://doi.org/10.3390/met15121345

