Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I)
Abstract
1. Introduction
2. Materials and Methods
2.1. Context and Scope of Research
2.2. Numerical Approach
2.3. Experimental Approach
2.3.1. Mold Design
2.3.2. Mold Manufacturing Process
2.3.3. Mold Setup and Experimental Procedure
3. Results and Discussion
3.1. Punch Design Solutions
3.1.1. Blank Punch
3.1.2. Punch with Same Head and Cone Shaft
3.1.3. Punch with Same Head and Sharp Shaft
3.1.4. Punch with Same Head and Stepped Shaft
3.2. Optimization Results
3.2.1. Design Optimization Methods
3.2.2. Response Surface Construction
3.2.3. Punching Process Simulation Results
- Part A: Initial Contact and Centering
- Part B: Elastic Deformation
- Part C: Plastic Deformation and Shearing
- Part D: Damage Initiation and Force Drop
- Part E: Slug Extraction and Friction
- Part F: Slug Ejection and Operation Completion
3.2.4. Numerical Model Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achouri, M.; Germain, G.; Dal Santo, P.; Saidane, D. Experimental and numerical analysis of micromechanical damage in the punching process for High-Strength Low-Alloy steels. Mater. Des. 2014, 56, 657–670. [Google Scholar] [CrossRef]
- Li, K.; Peng, J.; Zhou, C. Construction of whole stress–strain curve by small punch test and inverse finite element. Results Phys. 2018, 11, 440–448. [Google Scholar] [CrossRef]
- Abendroth, M. FEM analysis of small punch tests. Key Eng. Mater. 2017, 734, 23–36. [Google Scholar] [CrossRef]
- Maiti, S.K.; Ambekar, A.A.; Singh, U.P.; Date, P.P.; Narasimhan, K. Assessment of influence of some process parameters on sheet metal blanking. J. Mater. Process. Technol. 2000, 102, 30–36. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.; Shan, D.; Wang, C.; Li, J.; Liu, Y.; Qu, D. Development of a micro-forming system for micro-punching process of micro-hole arrays in brass foil. J. Mater. Process. Technol. 2012, 212, 2238–2246. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Wang, X.; Gong, B.; Zhang, L. Performance enhancement of punched holes streamlined winglet pair vortex generator for fin-and-tube heat exchanger. J. Mech. Sci. Technol. 2024, 38, 2613–2625. [Google Scholar] [CrossRef]
- Subramonian, S.; Altan, T.; Ciocirlan, B.; Campbell, C. Optimum selection of variable punch-die clearance to improve tool life in blanking non-symmetric shapes. Int. J. Mach. Tools Manuf. 2013, 75, 63–71. [Google Scholar]
- Kuo, C.-C.; Lin, B.-T.; Wang, W.-T. Optimization of microridge punch design for deep drawing process by using the fuzzy Taguchi method. Int. J. Adv. Manuf. Technol. 2019, 103, 177–186. [Google Scholar] [CrossRef]
- Li, H.; Wang, T. Effect of Punch Tip Geometry on Stress Distribution and Tool Wear. Int. J. Mach. Tools Manuf. 2020, 153, 103567. [Google Scholar]
- Hajiahmadi, S.; Naeini, H.M.; Talebi-Ghadikolaee, H.; Safdarian, R.; Zeinolabedin-Beygi, A. Effect of anisotropy on spring-back of pre-punched profiles in cold roll forming process: An experimental and numerical investigation. Int. J. Adv. Manuf. Technol. 2023, 129, 3965–3978. [Google Scholar] [CrossRef]
- Singh, G.; Teli, M.; Samanta, A.; Singh, R. Finite element modeling of laser-assisted machining of AISI D2 tool steel. Mater. Manuf. Process. 2013, 28, 443–448. [Google Scholar] [CrossRef]
- Abbasi-Bani, A.; Zarei-Hanzaki, A.; Pishbin, M.H.; Haghdadi, N. A comparative study on the capability of Johnson–Cook and Arrhenius-type constitutive equations to describe the flow behavior of Mg–6Al–1Zn alloy. Mech. Mater. 2014, 71, 52–61. [Google Scholar] [CrossRef]
- Akbari, Z.; Mirzadeh, H.; Cabrera, J.M. A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater. Des. 2015, 77, 126–131. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, G.; Kent, D.; Dargusch, M. Constitutive modelling of the flow behaviour of a beta titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models. Mater. Sci. Eng. A 2014, 612, 71–79. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Wang, G.; Zhou, J. Modified Johnson–Cook constitutive model and its application in predicting flow behavior of high-strength steel under hot deformation. Metals 2021, 11, 1089. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Verma, M. Development of a modified Johnson–Cook model for predicting flow behavior of high-strength low-alloy steel. Mater. Today Proc. 2020, 28, 1253–1260. [Google Scholar] [CrossRef]
- Cao, Y.; Di, H.S.; Misra, R.D.K.; Zhang, J. Hot deformation behavior of Alloy 800H at intermediate temperatures: Constitutive models and microstructure analysis. J. Mater. Eng. Perform. 2014, 23, 4298–4308. [Google Scholar] [CrossRef]
- Murugesan, M.; Lee, S.; Kim, D.; Kang, Y.H.; Kim, N. A comparative study of ductile damage model approaches for joint strength prediction in hot shear joining process. Procedia Eng. 2017, 207, 1689–1694. [Google Scholar] [CrossRef]
- Marroquín, L.G.; Hernández-Gómez, L.H.; Urriolagoitia-Calderón, G.; Urriolagoitia-Sosa, G.; Merchán-Cruz, E. Cumulative damage evaluation under fatigue loading. Appl. Mech. Mater. 2008, 13, 141–150. [Google Scholar] [CrossRef]
- Banerjee, A.; Dhar, S.; Acharyya, S.; Datta, D.; Nayak, N. Determination of Johnson–Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater. Sci. Eng. A 2015, 640, 200–209. [Google Scholar] [CrossRef]
- Buzyurkina, A.E.; Gladky, I.L.; Kraus, E.I. Determination and verification of Johnson–Cook model parameters at high-speed deformation of titanium alloys. Aerosp. Sci. Technol. 2015, 45, 121–127. [Google Scholar] [CrossRef]
- Gildemyn, E. Caractérisation des Procédés de Fabrication de pièces de Sécurité Automobile: Optimisation Multiobjectifs de la Mise en Forme. Ph.D. Thesis, Arts et Métiers ParisTech, Paris, France, November 2008. [Google Scholar]
- Opoz, T.T.; Chen, X. Chip formation mechanism using finite element simulation. Stroj. Vestn. J. Mech. Eng. 2016, 62, 659–667. Available online: https://researchonline.ljmu.ac.uk/id/eprint/4059 (accessed on 30 November 2025).
- Touache, A. Contribution à la Caractérisation et à la Modélisation de L’influence de la Vitesse et de la Température Sur le comportement en Découpage de Tôles Minces. Ph.D. Thesis, Université de Franche-Comté, Besancon, France, December 2006. [Google Scholar]
- Lestriez, P.; Saanouni, K.; Cherouat, A. Simulation numérique de la coupe orthogonale par couplage thermique–comportement–endommagement en transformations finies. Mécanique Ind. 2005, 6, 297–307. [Google Scholar] [CrossRef]
- Coer, J.; Laurent, H.; Oliveira, M.C.; Manach, P.Y.; Menezes, L.F. Detailed experimental and numerical analysis of a cylindrical cup deep drawing: Pros and cons of using solid-shell elements. Int. J. Mater. Form. 2018, 11, 357–373. [Google Scholar] [CrossRef]
- Zeidi, A.; Saada, F.B.; Elleuch, K.; Atapek, H. On the failure of punching process. Eng. Fail. Anal. 2021, 120, 105035. [Google Scholar] [CrossRef]
- Zeidi, A.; Saada, F.B.; Elleuch, K.; Atapek, H. AISI D2 punch head damage: Fatigue and wear mechanism. Eng. Fail. Anal. 2021, 129, 105676. [Google Scholar] [CrossRef]
- Krutz, P.; Leonhardt, A.; Graf, A.; Winter, S.; Galiev, E.; Rehm, M.; Kräusel, V.; Dix, M. Design, numerical and experimental testing of a flexible test bench for high-speed impact shear-cutting with linear motors. J. Manuf. Mater. Process. 2023, 7, 173. [Google Scholar] [CrossRef]
- Tang, H.; Wen, T.; Hong, J. Analysis of shear stress wrinkling of asymmetric sheet specimen under offset loading. J. Mech. Sci. Technol. 2022, 36, 1451–1457. [Google Scholar] [CrossRef]
- Bahri, A.; Guermazi, N.; Elleuch, K.; Ürgen, M. On the erosive wear of 304L stainless steel caused by olive seed particle impact: Modeling and experiments. Tribol. Int. 2016, 102, 608–619. [Google Scholar] [CrossRef]
- Ma, W.; Shen, H.; Xu, G. Study on cracks and process improvement for case hardened gear shaft straightening. J. Mech. Sci. Technol. 2022, 36, 2861–2870. [Google Scholar] [CrossRef]
- Haddouch, I.; Mouallif, I.; Zhouri, O.; Benhamou, M.; Hindi, Z. Numerical study of the impact of shear angle, yarn spacing and yarn fiber volume fraction on effective elastic properties of plain-woven composite. Mater. Today Commun. 2024, 39, 109171. [Google Scholar] [CrossRef]
- Gürün, H.; Göktaş, M.; Güldaş, A. Experimental examination of effects of punch angle and clearance on shearing force and estimation of shearing force using fuzzy logic. Trans. FAMENA 2016, 40, 19–28. [Google Scholar] [CrossRef]
- Zeidi, A.; Saada, F.B.; Elleuch, K.; Atapek, H. AISI D2 punch head and shaft failure in case of S500 MC punching. In International Tunisian Congress of Mechanics; Springer Nature: Cham, Switzerland, 2023; pp. 226–236. [Google Scholar] [CrossRef]
- Peng, S.; Ouyang, G.; Cao, X. Investigation on the forming quality and hardness of hollow filter rods using water vapor forming method. J. Mech. Sci. Technol. 2023, 37, 3095–3101. [Google Scholar] [CrossRef]
- Kim, K.M.; Ji, S.M.; Lee, S.W. Flow behavior dependence of rod shearing phenomena of various materials in automatic multi-stage cold forging. J. Mech. Sci. Technol. 2023, 37, 139–148. [Google Scholar] [CrossRef]
- Thipprakmas, S.; Sontamino, A. Fabrication of clean-cut surface on high strength steel using a new shaving die design. J. Mech. Sci. Technol. 2020, 34, 301–317. [Google Scholar] [CrossRef]
- Choubey, A.K.; Agnihotri, G.; Sasikumar, C. Experimental and mathematical analysis of simulation results for sheet metal parts in deep drawing. J. Mech. Sci. Technol. 2017, 31, 4215–4220. [Google Scholar] [CrossRef]
- Wang, K.; Luo, M.; Wierzbicki, T. Experiments and modeling of edge fracture for an AHSS sheet. Int. J. Fract. 2014, 187, 245–268. [Google Scholar] [CrossRef]
- Tejyan, S.; Kumar, N.; Ravi, R.K. Analysis of spring-back effect for AA6061 alloy sheet using finite element analysis. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Dureja, J.S.; Singh, R.; Bhatti, M.S. Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Prod. Manuf. Res. 2014, 2, 767–783. [Google Scholar] [CrossRef]
- Li, T.; Hu, K.; Cheng, L.; Ding, Y.; Shao, J.; Kong, L. Optimum selection of dental implant diameter and length in the posterior mandible with poor bone quality—A 3D finite element analysis. Appl. Math. Model. 2011, 35, 446–456. [Google Scholar] [CrossRef]
- Manohar, M.; Joseph, J.; Selvaraj, T.; Sivakumar, D. Application of desirability-function and RSM to optimize multiple objectives while turning Inconel 718 using coated carbide tools. Int. J. Manuf. Technol. Manag. 2013, 27, 218–237. [Google Scholar] [CrossRef]
- Wen, J.; He, L.; Zhou, T. Modeling of the polycrystalline cutting of austenitic stainless steel based on dislocation density theory and study of burr formation mechanism. J. Mech. Sci. Technol. 2023, 37, 2855–2870. [Google Scholar] [CrossRef]
- Loturco, I.; Artioli, G.G.; Kobal, R.; Gil, S.; Franchini, E. Predicting punching acceleration from selected strength and power variables in elite karate athletes: A multiple regression analysis. J. Strength Cond. Res. 2014, 28, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tao, Q.; Xiao, L. Simulation and analysis of serrated chip formation in cutting process of hardened steel considering ploughing-effect. J. Mech. Sci. Technol. 2018, 32, 2029–2037. [Google Scholar] [CrossRef]





















| Parameters | AISI D2 | S 500 MC |
|---|---|---|
| Density (kg/m3) | 7900 | 7900 |
| Young’s modulus (GPa) | 210 | 209 |
| Poisson’s ratio | 0.3 | 0.28 |
| Room temperature (K) | 298 | 298 |
| A (MPa) | 1490 | 510 |
| B (MPa) | 660 | 220 |
| n | 0.04 | 0.28 |
| m | 0.38 | 1 |
| C | 0.29 | 0.0019 |
| 0 | 1.00 | 1.00 |
| Coefficient | AISI D2 | S 500 MC |
|---|---|---|
| D1 | 0.69103 | 0.53467 |
| D2 | 0 | 0 |
| D3 | 0 | 0 |
| D4 | −0.03524 | −0.01913 |
| D5 | 0 | 0 |
| Factors | Low Level | Middle Level | High Level |
|---|---|---|---|
| Punch–die clearance, J (mm) | 0.25 | 0.3 | 0.35 |
| Punch velocity, V (mm/s) | 6 | 8 | 10 |
| Shear angle, α; β; γ (°) | 1 | 3 | 5 |
| No. | J (mm) | V (mm/s) | Shear Angle (°) | Von Mises Stress (Cone Shaft) | Von Mises Stress (Sharp Shaft) | Von Mises Stress (Stepped Shaft) |
|---|---|---|---|---|---|---|
| 1 | 0.25 | 6 | 1 | 1545 | 1490 | 1411 |
| 2 | 0.25 | 6 | 3 | 1280 | 1518 | 1326 |
| 3 | 0.25 | 6 | 5 | 1642 | 1241 | 1360 |
| 4 | 0.25 | 8 | 1 | 1340 | 1306 | 1475 |
| 5 | 0.25 | 8 | 3 | 1587 | 1620 | 1247 |
| 6 | 0.25 | 8 | 5 | 1469 | 1520 | 1454 |
| 7 | 0.25 | 10 | 1 | 1382 | 1256 | 1347 |
| 8 | 0.25 | 10 | 3 | 1217 | 1107 | 1546 |
| 9 | 0.25 | 10 | 5 | 1475 | 1365 | 1468 |
| 10 | 0.3 | 6 | 1 | 1549 | 1236 | 1485 |
| 11 | 0.3 | 6 | 3 | 1436 | 1547 | 1432 |
| 12 | 0.3 | 6 | 5 | 1520 | 1489 | 1364 |
| 13 | 0.3 | 8 | 1 | 1241 | 1489 | 1447 |
| 14 | 0.3 | 8 | 3 | 1445 | 1227 | 1345 |
| 15 | 0.3 | 8 | 5 | 1174 | 1566 | 1375 |
| 16 | 0.3 | 10 | 1 | 1258 | 1546 | 1540 |
| 17 | 0.3 | 10 | 3 | 1365 | 1574 | 1475 |
| 18 | 0.3 | 10 | 5 | 1365 | 1645 | 1378 |
| 19 | 0.35 | 6 | 1 | 1365 | 1215 | 1219 |
| 20 | 0.35 | 6 | 3 | 1420 | 1245 | 1308 |
| 21 | 0.35 | 6 | 5 | 1589 | 1214 | 1487 |
| 22 | 0.35 | 8 | 1 | 1696 | 1274 | 1244 |
| 23 | 0.35 | 8 | 3 | 1208 | 1543 | 1229 |
| 24 | 0.35 | 8 | 5 | 1362 | 1512 | 1373 |
| 25 | 0.35 | 10 | 1 | 1469 | 1601 | 1249 |
| 26 | 0.35 | 10 | 3 | 1457 | 1452 | 1241 |
| 27 | 0.35 | 10 | 5 | 1349 | 1584 | 1451 |
| Cone Punch Shaft | Sharp Punch Shaft | Stepped Punch Shaft | |
|---|---|---|---|
| Punch–die clearance ‘j’ (mm) | 0.25 | 0.3 | 0.35 |
| Punch velocity (mm/s) | 10 | 8 | 8 |
| shear angle (°) | (α) 2 | (β) 6 | (γ) 4 |
| Blank Punch | Cone Punch | Sharp Punch | Stepped Punch | |
|---|---|---|---|---|
| Maximum punching force (N) | 15,800 | 13,800 | 14,100 | 12,800 |
| Punching force reduction (%) | - | 13 | 11 | 19 |
| Von Mises stress (MPa) | 17,000 | 15,900 | 16,300 | 15,200 |
| Von Mises stress reduction (%) | - | 7 | 5 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeidi, A.; Akrout, M.; Elleuch, K.; Pereira, A. Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I). Metals 2025, 15, 1338. https://doi.org/10.3390/met15121338
Zeidi A, Akrout M, Elleuch K, Pereira A. Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I). Metals. 2025; 15(12):1338. https://doi.org/10.3390/met15121338
Chicago/Turabian StyleZeidi, Abdelwaheb, Mabrouka Akrout, Khaled Elleuch, and António Pereira. 2025. "Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I)" Metals 15, no. 12: 1338. https://doi.org/10.3390/met15121338
APA StyleZeidi, A., Akrout, M., Elleuch, K., & Pereira, A. (2025). Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I). Metals, 15(12), 1338. https://doi.org/10.3390/met15121338

