Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
- (1)
- In Al-Mg-Mn-Si alloys, the addition of Sn element can significantly promote the formation of uniformly distributed α-AlMnSi precipitates. Sn facilitates the heterogeneous nucleation of α-AlMnSi precipitates, favoring the formation of fine, dispersed, and high-volume-fraction precipitates, which markedly enhances the precipitation strengthening effect. During the three-stage aging homogenization process, the peak hardness of the Sn-containing Alloy 1# increased by 14.1% compared to the Sn-free Alloy 2#, fully demonstrating that the Sn element can enhance the microhardness of the Al-Mg-Mn-Si alloy.
- (2)
- The addition of Sn significantly enhances the mechanical properties of the Al-Mg-Mn-Si alloy, achieving a synergistic improvement in both strength and ductility. In the as-rolled state, the microhardness of Alloy 1# increased by 17.6% compared to Alloy 2#, while the ultimate tensile strength (UTS) and yield strength (YS) increased by 20.2% and 15.7%, respectively, with no reduction in elongation. This demonstrates that Sn not only improves the strength of the alloy but also maintains good ductility, providing a superior performance foundation for broader engineering applications of the alloy.
- (3)
- The addition of Sn enhances the heat resistance of the Al-Mg-Mn-Si alloy by promoting the precipitation of α-AlMnSi phase. Simultaneously, these precipitates can also effectively hinder the slip of dislocations when the alloy undergoes plastic deformation. These precipitates pin dislocations and hinder the migration of subgrain boundaries, thereby increasing the recrystallization onset temperature of the alloy from 350 °C to 425 °C. This improvement enables the alloy to maintain stable microstructural characteristics and mechanical properties at elevated temperatures, expanding its potential for high-temperature applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ran, J.; Zhao, J.; Liu, Z.; Zhao, P.; Shi, X.; Dong, X.; Yu, K.; Chen, K.; Liu, M.; Wang, R.; et al. Effect of processing path on microstructure and uniform deformation of Al-Mg-Si alloy sheet. J. Mater. Eng. Perform. 2025, prepublish, 1–13. [Google Scholar] [CrossRef]
- Hu, S.; Dong, Q.; Yao, Z.; Liu, F.; Li, Z.; Zeng, L.; Nagaumi, H. On the role of Zn addition in dispersoid precipitation and associated mechanical properties of Al-Mg-Mn alloy. Mater. Sci. Eng. A 2025, 944, 148864. [Google Scholar] [CrossRef]
- Rao, M.S.; Ramanjaneyulu, S. Influence of FSW and MIG on the mechanical properties of Al-Mg-Mn alloy with minor additions of 0.4% Sc and 0.1% Zr. Stroj. Časopis—J. Mech. Eng. 2024, 74, 135–140. [Google Scholar] [CrossRef]
- Olaf, E. Microchemistry evolution during industrial DC casting and subsequent homogenization of aluminum alloy AlMn0.5Mg0.5 (AA 3105). Mater. Today Commun. 2023, 36, 106724. [Google Scholar] [CrossRef]
- Aravindh, G.; Preetham Kumar, G.V.; Udayabhat, K. Enhancement of mechanical and tribological properties of Sm-modified Al5083 alloy through multiaxial forging. Results Eng. 2025, 27, 105954. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Liu, K.; Chen, X.G. Formation of intermetallic phases during solidification in Al-Mg-Mn 5xxx alloys with various mg levels. MATEC Web Conf. 2020, 326, 2002. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Y.; Bian, Q.; Yang, H.; Zhang, T.; Li, J.; Wang, J. Influence of the solidification rate on the microstructure and mechanical properties of rapidly solidified Al-Mg-Si alloy. J. Mater. Res. Technol. 2025, 39, 692–702. [Google Scholar] [CrossRef]
- Mofarrehi, M.; Javidani, M.; Chen, X.G. Effect of Mn on hot workability and processing maps of Al-Mg-Mn 5xxx alloys. J. Mater. Eng. Perform. 2023, 33, 11265–11277. [Google Scholar] [CrossRef]
- Engler, O.; Kuhnke, K.; Hasenclever, J. Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents. J. Alloys Compd. 2017, 728, 669–681. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, K.; Guo, S.; Wen, S.; Huang, H.; Wu, X.; Nie, Z.; Zhou, D. The recrystallization behavior of Al-6Mg-0.4Mn-0.15Zr-xSc (x = 0.04–0.10 wt%) alloys. Mater. Charact. 2018, 147, 262–270. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Nagaumi, H.; Wang, D.; Luo, S.; Dong, X.; Zou, J.; Yang, D.; Cui, J. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries. J. Power Sources 2022, 521, 230928. [Google Scholar] [CrossRef]
- Puybras, M.; Massardier, V.; Barnett, M.; Perez, M.; Dorin, T. Grain structure evolution in Al-Mg(-Sc-Zr) alloys during additive friction stir deposition. Mater. Charact. 2025, 229, 115566. [Google Scholar] [CrossRef]
- Kawahara, Y.; Marioara, C.D.; Hell, C.M.; Thrane, E.S.; Mørtsell, E.A.; Røyset, J.; Holmestad, R.; Kaneko, K. Effect of Cu addition on atomic clusters and its influence on the dispersion of precipitates in Si-rich Al-Mg-Si alloys. Mater. Sci. Eng. A 2025, 946, 149121. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Huang, Y.; Sheng, Z.; Fan, X.; Wu, Z.; Feng, W.; Liu, P. Investigation of hot deformation behavior and optimization of hot workability for a novel Zr, Sc alloyed Al-Mg-Mn alloy. J. Alloys Compd. 2025, 1017, 178943. [Google Scholar] [CrossRef]
- Lyu, W.; Shen, Y.; Tang, Y.; Yang, K.; Zhou, Z.; Zhao, C.; Lu, Y.; Guo, X. Particle-based friction stir additive manufacturing of an Al-Mg-Mn alloy. Addit. Manuf. 2025, 103, 104768. [Google Scholar] [CrossRef]
- Chen, L.; Liu, K.; Su, R.; Li, G. Effect of Sn element on microstructure and mechanical properties of Al-Cu-Mg alloy. Mater. Today Commun. 2025, 45, 112383. [Google Scholar] [CrossRef]
- Yu, T.; Chen, Y.; Zhang, Y.; Zhang, P.; Zhang, J. Correlated impacts of deformation-induced precipitation and precipitates dissolution on mechanical properties in Al-Mg-Si alloys. J. Alloys Compd. 2025, 1041, 183737. [Google Scholar] [CrossRef]
- Gao, J.; Wei, W.; Shi, W.; Zhou, X.; Wen, S.; Huang, H.; Gao, K.; Wu, X.; Rong, L.; Nie, Z. Enhanced homogeneous dispersoid precipitation by adding Si and Cr in an Al-Mg-Mn alloy. J. Alloys Compd. 2025, 1041, 183857. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Chen, X.G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents. Mater. Sci. Eng. A 2017, 708, 383–394. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.-L.; Wang, X.; Zhang, S.-Y.; Zhang, M.-X.; Wang, H.-Y. Enhanced long-term thermal stability and mechanical properties of twin-roll cast Al-Mg-Si alloys with Mn and Cu additions. Mater. Sci. Eng. A 2023, 872, 144945. [Google Scholar] [CrossRef]
- Liu, K.; Chen, X.G. Influence of heat treatment and its sequence on elevated-temperature properties of Al-Mn-Mg 3004 alloy. Mater. Sci. Eng. A 2017, 697, 141–148. [Google Scholar] [CrossRef]
- Tong, M.; Yang, J.; Xia, P.; Li, R.; Jiang, F. Influences of trace additions of Sc/Zr elements on high-temperature tensile behaviors of the Al-Mg-Mn alloys. J. Alloys Compd. 2025, 1040, 183681. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, X.; Wang, X.; Liu, Y.; Hu, W.; Guo, Y.; Wu, G. Effect of cerium on electrical conductivity and mechanical properties of Al-Mg-Si alloy. JOM 2025, prepublish, 1–12. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Song, R.; Harada, Y.; Muraishi, S.; Kumai, S.; Maruno, S.; Yoshino, M.; Iwao, S. Microstructure and mechanical properties of high-manganese-containing high-speed twin-roll cast Al-Mn-Si alloy strips and their cold-rolled sheets. MATEC Web Conf. 2020, 326, 6004. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Milovich, F.O.; Lukyanchuk, A.A.; Sviridova, T.A.; Fortuna, A.S.; Letyagin, N.V.; Solovev, I.S. New mechanisms and approaches in design and heat treatment of Al-Cu-Mn-Zr(-Sn, Si) based casting alloys aiming to increase heat resistance via formation of α(almnsi) phase dispersoids assisted by θʹ precipitates. Mater. Sci. Eng. A 2025, 947, 149217. [Google Scholar] [CrossRef]
- Lu, G.; Xu, C.; Wang, X.; Guan, S. Composition optimization of Al-Mg-Mn alloys for continuous casting-direct rolling and influence of Er and Zr on their microstructure and mechanical properties. J. Mater. Eng. Perform. 2023, 33, 10589–10602. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Z.; Li, C.; Wan, D.; Chen, X.; Chen, K.; Li, Y. Achieving superior dispersion-strengthening effect in an aa5xxx Al-Mg-Mn alloy by mico-alloying. Mater. Des. 2023, 226, 111647. [Google Scholar] [CrossRef]
- Li, M.-J.; Liu, S.; Wang, X.-D.; Shi, Y.-J.; Pan, Q.-L.; Zhou, X.-J.; Zhang, R.-F.; Birbilis, N. Improved intergranular corrosion resistance of Al-Mg-Mn alloys with Sc and Zr additions. Micron 2021, 154, 103202. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, M.; Lu, G.; Guan, S.; Zhang, E.; Xu, C. Effect of trace elements on the crystallization temperature interval and properties of 5xxx series aluminum alloys. Metals 2020, 10, 483. [Google Scholar] [CrossRef]
- Hu, S.; Dong, Q.; Yao, Z.; Chen, Y.; Yu, B.; Wei, Z.; Nagaumi, H. Sn microalloying-induced enhancement of dispersoid precipitation and mechanical properties in 5083 aluminum alloy. Mater. Lett. 2025, 403, 139457. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; Yang, B.; Gao, M.; Guan, R. Deformation behavior and microstructure evolution induced by nano-sized Al6Mn phase particles in a homogenized Al–6Mg–0.8Mn alloy during hot compression. Mater. Sci. Eng. A 2023, 882, 145461. [Google Scholar] [CrossRef]
- Sun, Y.C.; Jin, Y.H.; Xu, Z.; Zhao, T.; Li, Q.; Zhu, L.H.; Wang, N. Effect of Mn and Zr microalloy on the recrystallization and solidification behavior of cast-rolled Al-Mg-Si alloy. J. Mater. Eng. Perform. 2024, 34, 17333–17343. [Google Scholar] [CrossRef]
- GB/T 228-2002; Metallic Materials—Tensile Testing at Ambient Temperature. Standards Press of China: Beijing, China, 2002.
- Xing, J.; Lei, G.; Wang, Y.; Bhatta, L.; Kong, C.; Yu, H. Effect of room-temperature pre-rolling and pre-cryorolling on natural aging and bake hardening response of an Al-Mg-Si alloy. Metall. Mater. Trans. A 2023, 54, 3709–3732. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Liu, K.; Rometsch, P.; Parson, N.; Chen, X.G. Effects of almn dispersoids and Al3(Sc,Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys. Mater. Sci. Eng. A 2022, 855, 143950. [Google Scholar] [CrossRef]
- Meier, J.; Shin, D.; Poplawsky, J.D.; Allard, L.F.; Cheng, H.; Ohnishi, I.; Bahl, S.; Haynes, J.A.; Vo, N.Q.; Shyam, A. Effect of sn microalloying on the nucleation of l12 Al3Zr precipitates in a dilute aluminum-zirconium alloy. J. Alloys Compd. 2025, 1027, 180433. [Google Scholar] [CrossRef]
- Zerouki, M.; Khouas, A.; Ouali, M.O.; Ben Chabane, N. Experimental and numerical study of the behavior of an almgmn aluminum alloy under different strain rates and temperatures. Procedia Struct. Integr. 2023, 47, 915–918. [Google Scholar] [CrossRef]
- Zheng, D.; Li, J.; Wei, B.; Liang, T.; Yang, Z.; Wang, Z.; Wang, S. Sn–Sc microalloying-induced property improvement and micromechanisms of an Al-Mg-Si alloy. J. Mater. Res. Technol. 2023, 27, 472–489. [Google Scholar] [CrossRef]










| Samples | Element (wt. %) | ||||
|---|---|---|---|---|---|
| Mg | Mn | Si | Sn | Al | |
| 1# (Al-4Mg-1Mn-0.2Si-0.1Sn) | 4.24 | 1.05 | 0.23 | 0.10 | Bal. |
| 2# (Al-4Mg-1Mn-0.2Si) | 4.13 | 0.92 | 0.22 | - | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Y.; Wen, S.; Wu, X.; Gao, K.; Wei, W.; Rong, L.; Huang, H.; Nie, Z. Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy. Metals 2025, 15, 1280. https://doi.org/10.3390/met15121280
Chai Y, Wen S, Wu X, Gao K, Wei W, Rong L, Huang H, Nie Z. Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy. Metals. 2025; 15(12):1280. https://doi.org/10.3390/met15121280
Chicago/Turabian StyleChai, Yue, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang, and Zuoren Nie. 2025. "Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy" Metals 15, no. 12: 1280. https://doi.org/10.3390/met15121280
APA StyleChai, Y., Wen, S., Wu, X., Gao, K., Wei, W., Rong, L., Huang, H., & Nie, Z. (2025). Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy. Metals, 15(12), 1280. https://doi.org/10.3390/met15121280

