Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Evolution
3.2. The Microstructure After Annealing
3.3. Thermal Expansion and Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mary, T.A.; Evans, J.; Vogt, T.; Sleight, A. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92. [Google Scholar] [CrossRef]
- Attfield, J.P. A fresh twist on shrinking materials. Nature 2011, 480, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Mohn, P. A century of zero expansion. Nature 1999, 400, 18–19. [Google Scholar] [CrossRef]
- Miller, W.; Smith, C.; Mackenzie, D.; Evans, K. Negative thermal expansion: A review. J. Mater. Sci. 2009, 44, 5441–5451. [Google Scholar] [CrossRef]
- Attfield, J.P. Mechanisms and Materials for NTE. Front. Chem. 2018, 6, 371. [Google Scholar] [CrossRef]
- Song, Y.; Shi, N.; Deng, S.; Xing, X.; Chen, J. Negative thermal expansion in magnetic materials. Prog. Mater. Sci. 2021, 121, 100835. [Google Scholar] [CrossRef]
- Liang, E.; Sun, Q.; Yuan, H.; Wang, J.; Zeng, G.; Gao, Q. Negative thermal expansion: Mechanisms and materials. Front. Phys. 2021, 16, 53302. [Google Scholar] [CrossRef]
- Phillips, A.; Goodwin, A.L.; Halder, G.J.; Southon, P.D.; Kepert, C.J. Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. Angew. Chem. Int. Ed. 2008, 47, 1396–1399. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Guan, D.; Xu, M.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251. [Google Scholar] [CrossRef]
- Hu, L.; Chen, J.; Xu, J.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y.; Huang, R.; Deng, J. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Hu, F.-X.; Bao, L.-F.; Wang, J.; Wu, H.; Huang, Q.-Z.; Wu, R.-R.; Liu, Y.; Shen, F.-R.; Kuang, H. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J. Am. Chem. Soc. 2015, 137, 1746–1749. [Google Scholar] [CrossRef]
- Lin, J.; Tong, P.; Zhang, K.; Tong, H.; Guo, X.; Yang, C.; Wu, Y.; Wang, M.; Lin, S.; Chen, L. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe. Appl. Phys. Lett. 2016, 109, 241903. [Google Scholar] [CrossRef]
- Kavanagh, C.M.; Lightfoot, P.; Morrison, F.D. Superexchange-mediated negative thermal expansion in Nd-doped BiFeO3. J. Mater. Chem. C 2018, 6, 3260–3270. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Jiang, X.X.; Pan, Z.; Zhang, L.X.; Rong, Y.C.; Lin, Z.S.; Xing, X.R. Controllable negative thermal expansion, ferroelectric and semiconducting properties in PbTiO3-Bi(Co2/3Nb1/3)O3 solid solutions. J. Mater. Chem. C 2017, 5, 931–936. [Google Scholar] [CrossRef]
- Yamada, I.; Tsuchida, K.; Ohgushi, K.; Hayashi, N.; Kim, J.; Tsuji, N.; Takahashi, R.; Matsushita, M.; Nishiyama, N.; Inoue, T. Giant negative thermal expansion in the iron perovskite SrCu3Fe4O12. Angew. Chem. Int. Ed. 2011, 50, 6579–6582. [Google Scholar] [CrossRef]
- Azuma, M.; Chen, W.-T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Luo, X.; Wang, H.; Ren, W.; Yano, S.; Wang, C.-W.; Gardner, J.; Liss, K.-D.; Miao, P.; Lee, S.-H. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2. Phys. Rev. B 2016, 93, 224405. [Google Scholar] [CrossRef]
- Xu, M.; Li, Q.; Song, Y.; Xu, Y.; Sanson, A.; Shi, N.; Wang, N.; Sun, Q.; Wang, C.; Chen, X. Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range. Nat. Commun. 2023, 14, 4439. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tong, P.; Zou, Y.; Tong, W.; Jiang, W.; Jiang, Y.; Zhang, X.; Lin, J.; Wang, M.; Yang, C. Good comprehensive performance of Laves phase Hf1-xTaxFe2 as negative thermal expansion materials. Acta Mater. 2018, 161, 258–265. [Google Scholar] [CrossRef]
- Li, L.; Tong, P.; Jiang, W.; Lin, J.; Zhu, F.; Shu, M.; Fang, Z.; Zhao, G.; Jiang, Z.; Wang, W. Near-zero thermal expansion and high thermal conductivity from ambient to cryogenic temperatures in Hf0.87Ta0.13Fe2Cux. Materialia 2020, 9, 100637. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Fan, W.; Tan, J.; Xiao, F.; Qian, L.; Li, L. Giant negative thermal expansion in NaZn13-type La(Fe,Si,Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, R.; Li, S.; Wang, W.; Jiang, X.; Lin, Z.; Li, J.; Li, L. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1−xCox)11.4Al1.6 compounds. Phys. Chem. Chem. Phys. 2016, 18, 20276–20280. [Google Scholar] [CrossRef]
- Fleming, R.O.; Gonçalves, S.; Davarpanah, A.; Radulov, I.; Pfeuffer, L.; Beckmann, B.; Skokov, K.; Ren, Y.; Li, T.; Evans, J. Tailoring negative thermal expansion via tunable induced strain in La–Fe–Si-based multifunctional material. ACS Appl. Mater. Interfaces 2022, 14, 43498–43507. [Google Scholar] [CrossRef]
- Liu, J.; Gong, Y.; Wang, J.; Peng, G.; Miao, X.; Xu, G.; Xu, F. Realization of zero thermal expansion in La(Fe,Si)13-based system with high mechanical stability. Mater. Des. 2018, 148, 71–77. [Google Scholar] [CrossRef]
- Hu, F.-X.; Shen, B.-G.; Sun, J.-R.; Cheng, Z.-H.; Rao, G.-H.; Zhang, X.-X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 2001, 78, 3675–3677. [Google Scholar] [CrossRef]
- Fujita, A.; Fukamichi, K.; Wang, J.-T.; Kawazoe, Y. Large magnetovolume effects and band structure of itinerant-electron metamagnetic La(FexSi1−x)13 compounds. Phys. Rev. B 2003, 68, 104431. [Google Scholar] [CrossRef]
- Moreno-Ramírez, L.M.; Romero-Muñiz, C.; Law, J.Y.; Franco, V.; Conde, A.; Radulov, I.A.; Maccari, F.; Skokov, K.P.; Gutfleisch, O. The role of Ni in modifying the order of the phase transition of La(Fe,Ni,Si)13. Acta Mater. 2018, 160, 137–146. [Google Scholar] [CrossRef]
- Del Rose, T.J.; Chouhan, R.K.; Doyle, A.; Pathak, A.K.; Mudryk, Y. LaFeSi–LaFe13−xSix composites: Modulating magnetic and magnetocaloric properties through inherent stress manipulation. J. Appl. Phys. 2024, 136, 035101. [Google Scholar] [CrossRef]
- Peng, D.; Zhong, X.C.; Huang, J.; Zhang, H.; Huang, Y.; Dong, X.; Jiao, D.; Liu, Z.; Ramanujan, R.V. Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing. MRS Commun. 2018, 8, 1216–1223. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Qian, Y.; Qie, S.; Mi, S.; Xu, Z.; Xie, H.; Song, X.; Ma, T. Isotropic negative thermal expansion in the multiple-phase La-Fe-Co-Si-Cu alloys with enhanced strength and ductility. Acta Mater. 2024, 275, 120058. [Google Scholar] [CrossRef]
- Song, B.-Y.; Han, Y.-Q.; Cheng, J.; Gao, L.; Jin, X.; Sun, Z.-B.; Huang, J.-H. Effect of Al doping on magnetocaloric effect and mechanical properties of La(FeSi)13-based alloys. J. Alloys Compd. 2024, 990, 174398. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Liu, E.; Zhong, X.; Tao, K.; Wu, M.; Xing, C.; Xiao, Y.; Liu, J.; Long, Y. Outstanding comprehensive performance of La(Fe,Si)13Hy/In composite with durable service life for magnetic refrigeration. Adv. Electron. Mater. 2018, 4, 1700636. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Q.; Sun, N.; Ding, Z.; Li, L. Study of the microstructure, mechanical, and magnetic properties of LaFe11.6Si1.4Hy/Bi magnetocaloric composites. Materials 2018, 11, 943. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, Y.; Wu, S.; Li, Y.; Huang, J.; Liu, C.; Zhang, H.; Liu, Z.; Zhong, M.; Zhong, Z. Attractive properties of magnetocaloric spark plasma sintered LaFe11.6Si1.4/Pr2Co7 composites for near room temperature cooling applications. J. Alloys Compd. 2022, 902, 163780. [Google Scholar] [CrossRef]
- Xia, W.; Huang, J.; Sun, N.; Lui, C.; Ou, Z.; Song, L. Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8. J. Alloys Compd. 2015, 635, 124–128. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Zhang, M.; Shao, Y.; Li, Y.; Yan, A. LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr. Mater. 2016, 120, 58–61. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, X.; Dong, X.; Liu, C.; Huang, J.; Huang, Y.; Yu, H.; Liu, Z.; Huang, Y.; Ramanujan, R. LaFe11.6Si1.4/Pr40Co60 magnetocaloric composites for refrigeration near room temperature. J. Alloys Compd. 2021, 873, 159796. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, J.; Zhang, M.; Yan, A.; Skokov, K.P.; Karpenkov, D.Y.; Gutfleisch, O. High-performance solid-state cooling materials: Balancing magnetocaloric and non-magnetic properties in dual phase La-Fe-Si. Acta Mater. 2017, 125, 506–512. [Google Scholar] [CrossRef]
- Wang, J.; Gong, Y.; Liu, J.; Miao, X.; Xu, G.; Chen, F.; Zhang, Q.; Xu, F. Balancing negative and positive thermal expansion effect in dual-phase La(Fe,Si)13/α-Fe in-situ composite with improved compressive strength. J. Alloys Compd. 2018, 769, 233–238. [Google Scholar] [CrossRef]
- Miao, L.; Lu, X.; Wei, Z.; Zhang, Y.; Zhang, Y.; Liu, J. Enhanced mechanical strength in hot-rolled La-Fe-Si/Fe magnetocaloric composites by microstructure manipulation. Acta Mater. 2023, 245, 118635. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Wang, K.; Zhang, M.; Liu, J. Impact of interface structure on functionality in hot-pressed La-Fe-Si/Fe magnetocaloric composites. Acta Mater. 2020, 195, 163–171. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, Y.; Li, Y.; Huang, X.; Liu, C.; Huang, J.; Liu, Z.; Jiao, D.; Qiu, W.; Zhong, M. Transient liquid phase bonding assisted spark plasma sintering of La-Fe-Si magnetocaloric bulk materials. J. Alloys Compd. 2023, 965, 171419. [Google Scholar] [CrossRef]
- Gschneidner, K.A.; Calderwood, F.W. The Ag−La (Silver-Lanthanum) system. Bull. Alloy Phase Diagr. 1983, 4, 370–374. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Y.; Wu, Y.; Huang, J.; Liu, C.; Liu, J.; Liu, Z.; Zhong, M.; Zhong, Z.; Ramanujan, R. Superior comprehensive properties of LaFe11.8Si1.2/Ce60Co40 magnetocaloric composites. J. Rare Earths 2024, 42, 1073–1086. [Google Scholar] [CrossRef]
- Meschel, S.V.; Kleppa, O.J. Thermochemistry of Some Binary Alloys of Silver with the Lanthanide Metals by High Temperature Direct Synthesis Calorimetry. ChemInform 2004, 376, 73–78. [Google Scholar]
- Yin, F.; Huang, M.; Su, X.; Zhang, P.; Li, Z.; Shi, Y. Thermodynamic assessment of the Ag–Ce (silver–cerium) system. J. Alloys Compd. 2002, 334, 154–158. [Google Scholar] [CrossRef]
- Shen, B.; Sun, J.; Hu, F.; Zhang, H.; Cheng, Z. Recent progress in exploring magnetocaloric materials. Adv. Mater. 2009, 21, 4545–4564. [Google Scholar] [CrossRef]
- Mañosa, L.; Gonzalez-Alonso, D.; Planes, A.; Barrio, M.; Tamarit, J.-L.; Titov, I.S.; Acet, M.; Bhattacharyya, A.; Majumdar, S. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2011, 2, 595. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Deng, J.; Xing, X. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 2015, 44, 3522–3567. [Google Scholar] [CrossRef]
- Glushko, O.; Funk, A.; Maier-Kiener, V.; Kraker, P.; Krautz, M.; Eckert, J.; Waske, A. Mechanical properties of the magnetocaloric intermetallic LaFe11.2Si1.8 alloy at different length scales. Acta Mater. 2019, 165, 40–50. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, J.; Tong, P.; Kong, M.; Zhang, X.; Yang, C.; Song, W.; Sun, Y. Tunable thermal expansion in zinc-bonded composites: Zn/Si/Zn0.75Sn0.2Mn0.05NMn3. Scr. Mater. 2020, 177, 166–171. [Google Scholar] [CrossRef]
- Huang, S.; Sun, F.; Ruan, W.; Ren, S.; Zhang, Z.; Liang, X.; Ma, J. Design of near-zero thermal expansion composites with superior mechanical properties in a wide temperature region. J. Mater. Res. Technol. 2023, 25, 2166–2176. [Google Scholar] [CrossRef]
Sample | T (K) | Weight Percentage (wt.%) | Fit Coefficient | ||||
---|---|---|---|---|---|---|---|
NaZn13 | α-Fe(Co,Si) | LaAg2 | La2O3 | Rp | Rwp | ||
HT-S1 | 1223 | 61.05 | 33.58 | 5.37 | ND | 3.43 | 4.38 |
1273 | 62.37 | 33.97 | 3.65 | ND | 3.25 | 4.18 | |
1323 | 60.87 | 35.17 | ND | 3.96 | 3.46 | 4.36 | |
HT-S2 | 1273 | 53.33 | 38.99 | 7.67 | ND | 4.29 | 5.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, K.; Qian, H.; Cai, R.; Lu, X.; Liu, J. Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering. Metals 2025, 15, 1131. https://doi.org/10.3390/met15101131
Wang Y, Xu K, Qian H, Cai R, Lu X, Liu J. Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering. Metals. 2025; 15(10):1131. https://doi.org/10.3390/met15101131
Chicago/Turabian StyleWang, Yuyu, Kai Xu, Hanyang Qian, Rui Cai, Xiang Lu, and Jian Liu. 2025. "Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering" Metals 15, no. 10: 1131. https://doi.org/10.3390/met15101131
APA StyleWang, Y., Xu, K., Qian, H., Cai, R., Lu, X., & Liu, J. (2025). Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering. Metals, 15(10), 1131. https://doi.org/10.3390/met15101131