Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Production Method and Materials
2.2. Characterization Methods
2.3. Corrosion Test Methods
3. Results
3.1. Electrochemical Measurement
3.2. Gravimetric Tests Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams: A Design Guide; Butterworth-Heinemann: Boston, MA, USA, 2000. [Google Scholar]
- Duarte, I.; Ferreira, J.M.F. Aluminium Alloy Foams: Production and Properties. J. Mater. Process. Technol. 2004, 148, 152–158. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q. Effect of magnetic-mechanical coupled stirring on the distribution of B4C particles in Al-B4C composites. J. Mater. Eng. Perform. 2022, 31, 907–917. [Google Scholar] [CrossRef]
- Agrawal, E.; Tungikar, V. Wear performance of Al-TiC composite at elevated temperature. World J. Eng 2021, 19, 346–351. [Google Scholar] [CrossRef]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Multi-response modeling for sliding wear behavior of AA5052/TiC composites by stir casting: A comparative analysis using response surface methodology and fuzzy logic system. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 2022, 236, 254–266. [Google Scholar] [CrossRef]
- Alam, M.A.; Ya, H.H.; Azeem, M.; Yusuf, M.; Sapuan, S.M.; Masood, F. Investigating the effect of mixing time on the crystallite size and lattice strain of the AA7075/ TiC composites. Mater. Werkst. 2021, 52, 1112–1120. [Google Scholar] [CrossRef]
- Turan, M.E.; Aydin, F.; Sun, Y.; Zengin, H.; Akinay, Y. Wear resistance and tribo logical properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting. Tribol. Int. 2021, 164, 107201. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Gao, Q.; Song, J.; Han, G. A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing. J. Manuf. Process. 2021, 68, 126–135. [Google Scholar] [CrossRef]
- Chintada, S.; Dora, S.P.; Kare, D. Mechanical behavior and metallographic characterization of microwave sintered Al/SiC composite materials–an experimental approach. Silicon 2022, 14, 7341–7352. [Google Scholar] [CrossRef]
- Kumar, K.; Dabade, B.; Wankhade, L. Determination of prediction model and optimization of process parameters for fabrication of Al-SiC composite using response surface methodology. Adv. Mater. Process. Technol. 2022, 8, 1983–1999. [Google Scholar] [CrossRef]
- Baghel, M.; Krishna, C.M.; Suresh, S. Development of Al-SiC composite material from rice husk and its parametric assessment. Mater. Res. Express 2022, 9, 016518. [Google Scholar] [CrossRef]
- Zabihi, M.; Qods, F.; Emadoddin, E. The effect of simple shear extrusion on the texture and porosity content of Al/Al2O3 composites. Iran. J. Mater. Form. 2022, 9, 26–35. [Google Scholar] [CrossRef]
- Dang, X.; Zhang, B.; Zhang, Z.; Hao, P.; Xu, Y.; Xie, Y.; Huang, R.; Wang, K.; Wang, W.; Wang, Q. Microstructural evolutions and mechanical properties of multilayered 1060Al/Al-Al2O3 composites fabricated by cold spraying and accumulative roll bonding. J. Mater. Res. Technol 2021, 15, 3895–3907. [Google Scholar] [CrossRef]
- Aydin, F. The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Adv. Powder Technol. 2021, 32, 445–463. [Google Scholar] [CrossRef]
- Eifert, H.; Banhart, J. Metal Foams in Strongly Corrosive Environments. In Cellular Metals: Manufacture, Properties, and Applications; Banhart, J., Fleck, N.A., Mortensen, A., Eds.; MIT-Verlag: Bremen, Germany, 2003; pp. 231–236. [Google Scholar]
- Chan, H.L.; Guo, K. Corrosion Studies of Open Cell Aluminum Foam in Simulated Marine Environment. Cal State ScholarWorks. 2020. Available online: https://scholarworks.calstate.edu/concern/projects/ht24wm58j (accessed on 25 July 2025).
- Rossi, S.; Calovi, M.; Fedel, M. Corrosion Protection of Aluminum Foams by Cataphoretic Deposition. Surf. Coat. Technol. 2017, 307, 100–107. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Sudagar, J.; Gao, F.; Feng, P. Preparation and Corrosion Resistance of Electroless Ni-P Coating on Open-Cell Aluminum Foams. Int. J. Electrochem. Sci. 2012, 7, 5951–5961. [Google Scholar] [CrossRef]
- Hihara, L.H.; Latanision, R.M. Corrosion of metal matrix composites. Int. Mater. Rev. 1994, 39, 245–264. [Google Scholar] [CrossRef]
- Ikubanni, P.; Oki, M.; Adeleke, A.; Adesina, O.; Omoniyi, P.; Akinlabi, E. Electrochemical Studies of the Corrosion Behavior of Al/SiC/PKSA Hybrid Composites in 3.5% NaCl Solution. J. Compos. Sci. 2022, 6, 286. [Google Scholar] [CrossRef]
- Mahdi, S.M.; Ghalib, L. Corrosion behavior of Al/SiC composite prepared by powder metallurgy in chloride environments. J. Bio-Tribo-Corros. 2022, 8, 8. [Google Scholar] [CrossRef]
- Loto, R.T.; Babalola, P. Analysis of SiC grain size variation and NaCl concentration on the corrosion susceptibility of AA1070 aluminium matrix composites. Cogent Eng. 2018, 5, 1473002. [Google Scholar] [CrossRef]
- Nunes, P.C.R.; Ramanathan, L.V. Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 1995, 51, 610–617. [Google Scholar] [CrossRef]
- Erdemir, F.; Canakci, A.; Varol, T.; Ozkaya, S. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation. J. Alloys Compd. 2015, 644, 589–596. [Google Scholar] [CrossRef]
- Candan, S.; Bilgic, E. Corrosion behavior of Al–60 vol.% SiCp composites in NaCl solution. Mater. Lett. 2004, 58, 2787–2790. [Google Scholar] [CrossRef]
- Loto, R.T.; Babalola, P. Evaluation of the influence of alumina nano-particle size and weight composition on the corrosion resistance of monolithic AA1070 aluminium. Mater. Today Proc. 2022, 65, 2138–2143. [Google Scholar] [CrossRef]
- Natishan, P.M.; O’grady, W.E. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review. J. Electrochem. Soc. 2014, 161, 421–432. [Google Scholar] [CrossRef]
- Kolev, M.; Drenchev, L.; Petkov, V.; Dimitrova, R.; Kovacheva, D. Open-Cell AlSn6Cu-SiC Composites: Fabrication, Dry-Sliding Wear Behavior, and Machine Learning Methods for Wear Prediction. Materials 2023, 16, 6208. [Google Scholar] [CrossRef] [PubMed]
- Kolev, M.; Drenchev, L.; Petkov, V.; Dimitrova, R.; Kolev, K.; Simeonova, T. Fabrication and Dry-Sliding Wear Characterization of Open-Cell AlSn6Cu–Al2O3 Composites with LSTM-Based Coefficient of Friction Prediction. Metals 2024, 14, 428. [Google Scholar] [CrossRef]
- ASTM G1-03(2017)e1; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2025.
- Zhang, X.L.; Jiang, Z.H.; Yao, Z.P.; Song, Y.; Wu, Z.D. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 2009, 51, 581. [Google Scholar] [CrossRef]
- Zhou, H.; Chhin, D.; Morel, A.; Gallant, D.; Mauzeroll, J. Potentiodynamic polarization curves of AA7075 at high scan rates interpreted using the high field model. Npj Mater. Degrad. 2022, 6, 20. [Google Scholar] [CrossRef]
- Xie, X.; Holze, R. Electrode Kinetic Data: Geometric vs. Real Surface Area. Batteries 2022, 8, 146. [Google Scholar] [CrossRef]
- Wu, L.; He, Y.-H.; Jiang, Y.; Zeng, Y.; Xiao, Y.-F.; Nan, B. Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Trans. Nonferrous Met. Soc. China 2014, 24, 3509–3516. [Google Scholar] [CrossRef]
- Vini, M.H.; Daneshmand, S.; Alabboodi, K.O.; Ali, A.B.M.; Jasim, D.J.; Salahshour, S.; Hekmatifar, M. Corrosion and Mechanical Properties of Al/Al2O3 Composites Fabricated via Accumulative Roll Bonding Process: Experimental and Numerical Simulation. Surf. Coat. Technol. 2024, 494, 131370. [Google Scholar] [CrossRef]
- Aydın, F. A Review of Recent Developments in the Corrosion Performance of Aluminium Matrix Composites. J. Alloys Compd. 2023, 949, 169508. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Ananthapadmanaban, D.; Arun Vasantha Geethan, K.; Ravichandran, P. Microscopical and Corrosion Studies on Al6061—10% Al2O3 Functionally Graded Metal Matrix Composites. Mater. Today 2022, 62, 459–462. [Google Scholar] [CrossRef]
- Yu, L.; Hao, S.; Nong, X.; Cao, X.; Zhang, C.; Liu, Y.; Yan, Y.; Jiang, Y. Comparative Study on the Corrosion Resistance of 6061Al and SiC3D/6061Al Composite in a Chloride Environment. Materials 2021, 14, 7730. [Google Scholar] [CrossRef]
- Roberge, P.R. Corrosion Engineering: Principles and Practice, 1st ed.; McGrawHill: New York, NY, USA, 2008. [Google Scholar]
- Karthikraja, M.; Ramanathan, K.; Loganathan, K.T.; Selvaraj, S. Corrosion behaviour of SiC and Al2O3 reinforced Al 7075 hybrid aluminium matrix composites by weight loss and electrochemical methods. J. Indian Chem. Soc. 2023, 100, 101002. [Google Scholar] [CrossRef]
Type of Composite | Pore Size [µm] | Designation | Archimedes Porosity [%] | Total Porosity [%] | Obj. S [cm2] | Coefficient of Roughness Rf | OCP [V] | Ecorr [V] | Jcorr [µA cm−2] | Ipore/Isealed |
---|---|---|---|---|---|---|---|---|---|---|
AlSn6Cu | 800–1000 | C | 64.0 | 65.5 | 13.8 | 4.49 | −0.682 (−0.416) | −0.847 (−0.400) | 10.6 ± 1.5 | 3.46 |
AlSn6Cu-SiC | SC | 49.1 | 48.3 | 9.76 | 4.48 | −0.903 (−0.645) | −0.903 (−0.619) | 18.7 ± 2.7 | 1.71 | |
AlSn6Cu-Al2O3 | AC | 45.9 | 45.5 | 16.9 | 4.41 | −0.990 (−0.645) | −0.956 (−0.646) | 11.4 ± 1.1 | 1.75 | |
AlSn6Cu | 1000–1200 | E | 53.7 | 55.8 | 15.1 | 4.19 | −0.666 (−0.548) | −0.804 (−0.629) | 4.8 ± 0.01 | 2.61 |
AlSn6Cu-SiC | SE | 37.2 | 36.6 | 16.3 | 4.11 | −1.173 (−0.607) | −1.103 (−0.591) | 37.9 ± 2.4 | 4.87 | |
AlSn6Cu-Al2O3 | AE | 38.7 | 37.6 | 15.1 | 4.12 | −0.746 (−0.643) | −0.753 (−0.618) | 4.01 ± 0.8 | 3.59 |
Reinforcement: | SiC | Al2O3 | ||
---|---|---|---|---|
Before Corr. Test | After Corr. Test | Before Corr. Test | After Corr. Test | |
Al [mass. %] | 82.8 | 75.4 | 81.4 | 72.4 |
Sn [mass. %] | 12.5 | 20.0 | 17.2 | 24.1 |
Cu [mass. %] | 1.8 | 3.3 | 1.4 | 3.5 |
Si [mass. %] | 2.9 | 1.2 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolev, M.; Dyakova, V.; Kostova, Y.; Tzaneva, B.; Spasova, H.; Dimitrova, R. Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing. Metals 2025, 15, 1073. https://doi.org/10.3390/met15101073
Kolev M, Dyakova V, Kostova Y, Tzaneva B, Spasova H, Dimitrova R. Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing. Metals. 2025; 15(10):1073. https://doi.org/10.3390/met15101073
Chicago/Turabian StyleKolev, Mihail, Vanya Dyakova, Yoanna Kostova, Boriana Tzaneva, Hristina Spasova, and Rositza Dimitrova. 2025. "Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing" Metals 15, no. 10: 1073. https://doi.org/10.3390/met15101073
APA StyleKolev, M., Dyakova, V., Kostova, Y., Tzaneva, B., Spasova, H., & Dimitrova, R. (2025). Effects of Ceramic Particulate Type and Porosity on the Corrosion Behavior of Open-Cell AlSn6Cu Composites Produced via Liquid-State Processing. Metals, 15(10), 1073. https://doi.org/10.3390/met15101073