On Transformation and Stress–Strain–Temperature Behavior of Fine-Grained Ni-Rich NiTi Wire vs. Aging Mode
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Studies
3.2. Evolution of MTs
3.3. Latent Heat
3.4. Hysteresis
3.5. Stress- and Strain-Temperature Behavior
4. Discussion
4.1. Microstructure Evolution
4.2. Peculiarities of Martensitic Transformations
4.3. Latent Heat and Thermal Hysteresis
4.4. Stress- and Strain-Temperature Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Dobrzańska, J. Nitinol type Alloys general characteristics and applications in endodontics. Processes 2020, 10, 101. [Google Scholar] [CrossRef]
- Nespoli, A.; Passaretti, F.; Szentmiklósi, L.; Maróti, B.; Placidi, E.; Cassetta, M.; Yada, R.Y.; Farrar, D.H.; Tian, K.V. Biomedical NiTi and β-Ti alloys: From composition, microstructure and thermo-mechanics to application. Metals 2022, 12, 406. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Wang, X.; Verlinden, B.; Kustov, S. Multi-stage martensitic transformation in Ni-rich NiTi shape memory alloys. Funct. Mater. Lett. 2017, 10, 1740004. [Google Scholar] [CrossRef]
- Ravari, B.K.; Farjami, S.; Nishida, M. Effects of Ni concentration and aging conditions on multistage martensitic transformation in aged Ni-rich Ti–Ni alloys. Acta Mater. 2014, 69, 17–29. [Google Scholar] [CrossRef]
- Ryklina, E.P.; Polyakova, K.A.; Resnina, N.N. Role of Structural Heredity in Aging-Induced Microstructure and Transformation Behavior in Ni-rich Titanium Nickelide. Shape Mem. Superelast. 2022, 8, 200–214. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y.; Wang, G.; Wang, X. Effect of varisized Ni4Ti3 precipitate on the phase transformation behavior and functional stability of Ti-50.8 at.% Ni alloys. Mater. Charact. 2021, 172, 110832. [Google Scholar] [CrossRef]
- Ryklina, E.P.; Khmelevskaya, I.Y.; Prokoshkin, S.D.; Inaekyan, K.E.; Ipatkin, R.V. Effects of strain aging on two-way shape memory effect in a nickel–titanium alloy for medical application. Mater. Sci. Eng. A 2006, 438, 1093–1096. [Google Scholar] [CrossRef]
- Poletika, T.M.; Girsova, S.L.; Bitter, S.M.; Lotkov, A.I.; Zheronkina, K.A. Structure, Martensitic Transformations, and Mechanical Properties of Aging Nanocrystalline Ti–50.9 at% Ni Alloy. Phys. Mesomech. 2024, 27, 152–162. [Google Scholar] [CrossRef]
- Ryklina, E.P.; Polyakova, K.A.; Murygin, S.R.; Komarov, V.S.; Resnina, N.N.; Andreev, V.A. Role of structural heredity in control of functional and mechanical characteristics of Ni-rich titanium nickelide. Phys. Met. Metallogr. 2022, 123, 1226–1233. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E.; Libertini, R. Effect of Temperature on the Mechanical Behaviour of Ni-Ti Shape Memory Sheets. In TMS 2016: 145thAnnual Meeting & Exhibition: Supplemental Proceedings; Springer: Berlin/Heidelberg, Germany, 2016; pp. 433–439. [Google Scholar]
- Ostropiko, E.; Yu Konstantinov, A. Functional behaviour of TiNi shape memory alloy after high strain rate deformation. Mater. Sci. Technol. 2021, 37, 794–804. [Google Scholar] [CrossRef]
- Churakova, A.; Gunderov, D.; Kayumova, E. The Investigation of Microstructure and Mechanical Behavior and the Fractographic Analysis of the Ti49.1Ni50.9 Alloy in States with Different Activation Deformation Volumes. Appl. Sci. 2021, 11, 3052. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Lin, Y.; Wang, G.; Wang, X. Effect of stretching-bending deformation and aging treatment on phase transformation behavior and superelasticity of Ti-50.8 at.% Ni alloy. Intermetallics 2021, 129, 107051. [Google Scholar] [CrossRef]
- Kuranova, N.N.; Makarov, V.V.; Pushin, V.G.; Popov, N.A. The structure and mechanical properties of the aging shape-memory Ti49Ni51 alloy after thermomechanical treatment. Phys. Met. Metallogr. 2023, 124, 230–237. [Google Scholar] [CrossRef]
- Fan, Q.C.; Zhang, Y.H.; Wang, Y.Y.; Sun, M.Y.; Meng, Y.T.; Huang, S.K.; Wen, Y.H. Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater. Sci. Eng. A 2017, 700, 269–280. [Google Scholar] [CrossRef]
- Pu, Z.; Chen, C.; Du, D.; Xi, R.; Jiang, H.; Wang, K.; Sun, L.; Wang, X.; Chang, B. Accelerated improvement in tensile superelasticity of electron beam directed energy deposition manufactured NiTi alloys by artificial thermal cycling combined with low temperature aging treatment. Virtual Phys. Prototyp. 2024, 19, e2352782. [Google Scholar] [CrossRef]
- Kim, J.I.; Miyazaki, S. Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9 at.% Ni alloy. Acta Mater. 2005, 53, 4545–4554. [Google Scholar] [CrossRef]
- Wang, X.; Verlinden, B.; Van Humbeeck, J. Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys. Intermetallics 2015, 62, 43–49. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Verlinden, B.; Van Humbeeck, J. Effect of grain size on aging microstructure as reflected in the transformation behavior of a low-temperature aged Ti–50.8 at.% Ni alloy. Scr. Mater. 2013, 69, 545–548. [Google Scholar] [CrossRef]
- Wang, X.; Kustov, S.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015, 82, 224–233. [Google Scholar] [CrossRef]
- Komarov, V.; Karelin, R.; Khmelevskaya, I.; Yusupov, V.; Gunderov, D. Effect of post-deformation annealing on structure and properties of nickel-enriched Ti-Ni shape memory alloy deformed in various initially deformation-induced structure states. Crystals 2022, 12, 506. [Google Scholar] [CrossRef]
- Poletika, T.M.; Girsova, S.L.; Lotkov, A.I.; Kudryachov, A.N.; Girsova, N.V. Structure and Multistage Martensite Transformation in Nanocrystalline Ti-50.9 Ni Alloy. Metals 2021, 11, 1262. [Google Scholar] [CrossRef]
- Vojtěch, D.; Voděrová, M.; Kubásek, J.; Novák, P.; Šedá, P.; Michalcová, A.; Fojt, J.; Hanus, J.; Mestek, O. Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni–Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents. Mater. Sci. Eng. A 2011, 528, 1864–1876. [Google Scholar] [CrossRef]
- Chen, Y.; Tyc, O.; Molnárová, O.; Heller, L.; Šittner, P. Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shape Mem. Superelast. 2019, 5, 42–62. [Google Scholar] [CrossRef]
- Šittner, P.; Heller, L.; Sedlák, P.; Chen, Y.; Tyc, O.; Molnárová, O.; Kadeřávek, L.; Seiner, H. B2 ⇒ B19′ ⇒ B2 T Martensitic Transformation as a Mechanism of Plastic Deformation of NiTi. Shape Mem. Superelast. 2019, 5, 383–396. [Google Scholar] [CrossRef]
- Wollants, P.; Roos, J.R.; Delaey, L. Thermally-and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 1993, 37, 227–288. [Google Scholar] [CrossRef]
- Tyc, O.; Iaparova, E.; Molnárová, O.; Heller, L.; Šittner, P. Stress induced martensitic transformation in NiTi at elevated temperatures: Martensite variant microstructures, recoverable strains and plastic strains. Acta Mater. 2024, 279, 120287. [Google Scholar] [CrossRef]
- Ryklina, E.P.; Polyakova, K.A.; Prokoshkin, S.D. Role of nickel content in one-way and two-way shape recovery in binary Ti-Ni alloys. Metals 2021, 11, 119. [Google Scholar] [CrossRef]
- Frenzel, J.; George, E.P.; Dlouhy, A.; Somsen, C.; Wagner, M.X.; Eggeler, G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 3444–3458. [Google Scholar] [CrossRef]
- Ryklina, E.; Murygin, S.; Komarov, V.; Polyakova, K.; Resnina, N.; Andreev, V. On Structural Sensitivity of Young’s Modulus of Ni-Rich Ti-Ni Alloy. Metals 2023, 13, 1428. [Google Scholar] [CrossRef]
- ASTM E112-13; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM F2004-24; Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis. ASTM International: West Conshohocken, PA, USA, 2004. [CrossRef]
- ASTM F2516-22; Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Ryklina, E.P.; Polyakova, K.A.; Murygin, S.R.; Isaenkova, M.G.; Zaripova, M.M.; Fesenko, V.A.; Komarov, V.S.; Andreev, N.V.; Resnina, N.N.; Andreev, V.A. On Textural Heredity of Ni-rich Ti–Ni alloy: Specific Features of Transformation and Tensile Behavior. Shape Mem. Superelast. 2023, 9, 384–401. [Google Scholar] [CrossRef]
- Zhuravlev, V.N.; Pushin, V.G. Thermomechanical Shape Memory Alloys and Their Application in Medicine; UrB Russian Academy of Science: Ekaterinburg, Russia, 2000. [Google Scholar]
- Polyakova, K.A.; Ryklina, E.P.; Prokoshkin, S.D. Effect of grain size and ageing-induced microstructure on functional characteristics of a Ti-50.7 at.% Ni alloy. Shape Mem. Superelast. 2020, 6, 139–147. [Google Scholar] [CrossRef]
- Prokoshkin, S.D. Chapter 4. Shape memory effects. In Shape Memory Alloys: Fundamentals, Modeling, Applications; Brailovski, V., Prokoshkin, S., Terriault, P., Trochu, F., Eds.; ÉTS: Montreal, Canada, 2003. [Google Scholar]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. (Eds.) Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, OH, USA, 1990; Volume 3, p. 2874. [Google Scholar]
- Tadaki, T.; Nakata, Y.; Shimizu, K.I.; Otsuka, K. Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy. Trans. Jpn. Inst. Met. 1986, 27, 731–740. [Google Scholar] [CrossRef]
- Polyakova, K.; Ryklina, E.; Prokoshkin, S. Thermomechanical response of titanium nickelide on austenite grain/subgrain size. Mater. Today Proc. 2017, 4, 4836–4840. [Google Scholar] [CrossRef]
- Ryklina, E.; Polyakova, K.; Murygin, S.; Komarov, V.; Andreev, V. On stress-and strain-temperature behavior of titanium nickelide with various grain/subgrain size. Mater. Lett. 2022, 328, 133135. [Google Scholar] [CrossRef]
- Ryklina, E.P.; Ashimbaev, D.A.; Murygin, S.R. Thermokinetics of shape recovery of nanostructured titanium nickelide. Lett. Mater. 2022, 12, 89–93. [Google Scholar] [CrossRef]
- Li, G.; Yu, T.; Zhang, N.; Chen, M. The effect of Ni content on phase transformation behavior of NiTi alloys: An atomistic modeling study. Comput. Mater. Sci. 2022, 215, 111804. [Google Scholar] [CrossRef]
- Kang, J.; Li, R.; Zheng, R.; Wu, H.; Wang, M.; Niu, P.; Li, J.; Liu, X.; Lai, D.; Yuan, T. Unconventional precipitation and martensitic transformation behaviour of Ni-rich NiTi alloy fabricated via laserdirected energy deposition. Virtual Phys. Prototyp. 2023, 18, e2231415. [Google Scholar] [CrossRef]
- Kaya, I.; Karaca, H.E.; Nagasako, M.; Kainuma, R. Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys. Mater. Charact. 2020, 159, 110034. [Google Scholar] [CrossRef]
- Pushin, V.G. (Ed.) Titanium Nickelide Shape Memory Alloys, Part 1: Structure, Phase Transformations and Properties; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2006. (In Russian) [Google Scholar]
- Somsen, C.; Wassermann, E.F.; Kästner, J.; Schryvers, D. Precursorphenomenon in a quenched and aged Ni52Ti48 shape memory alloy. J. Phys. IV Proc. 2003, 112, 777–780. [Google Scholar]
- Ryklina, E.P.; Abduraimova, N.U.; Resnina, N.N. Alloy Ti–50.2 at.% Ni for Actuators: Evolution of Structure and Shape Memory Effects Under Post-Deformation Annealing. Part 1. Structure and Phase Transformations. Met. Sci. Heat Treat. 2021, 63, 203–209. [Google Scholar] [CrossRef]
- Shindo, D.; Murakami, Y.; Ohba, T. Understanding precursorphenomenon for the R-phase transformation in Ti-Ni-based alloys. MRS Bull. 2002, 27, 121–127. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, F.; Li, L.; Yang, H.; Liu, Y. Effect of ageing treatment on the transformation behaviour of Ti–50.9 at.% Ni alloy. Acta Mater. 2008, 56, 736–745. [Google Scholar] [CrossRef]
- Wasilewski, R.J. 55-Nitinol-the Alloy with a Memory: Its Physical Metallurgy, Properties and Applications—A Report; NASA: Washington, DC, USA, 1972. [Google Scholar]
- Wayman, C.M. Phase Transformations, Non-Diffusive. In Physical Mettalurgy; RW Cahn, R.W., Haasen, P., Eds.; North-Holland: New York, NY, USA, 1983; pp. 1031–1075. [Google Scholar]
- Kurdyumov, G.V.; Khandros, L.G. On the thermoelastic equilibrium on martensitic transformations. Dokl. Akad. Nauk SSSR 1949, 66, 211–214. [Google Scholar]
- Chrobak, D.; Stróż, D.; Morawiec, H. Effect of early stages of precipitation and recovery on the multi-step transformation in deformed and annealed near-equiatomic NiTi alloy. Scr. Mater. 2003, 48, 571–576. [Google Scholar] [CrossRef]
- Chrobak, D.; Stróż, D. Two-stage R phase transformation in a cold-rolled and annealed Ti–50.6 at.% Ni alloy. Scr. Mater. 2005, 52, 757–760. [Google Scholar] [CrossRef]
- Adharapurapu, R.R.; Vecchio, K.S. Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8 Ni. J. Alloys Compd. 2017, 693, 150–163. [Google Scholar] [CrossRef]
- Ball, J.M.; James, R.D. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. London Ser. A Phys. Eng. Sci. 1992, 338, 389–450. [Google Scholar] [CrossRef]
- Mañosa, L. Magnetism and Structure in Functional Materials; Planes, A., Saxena, A., Eds.; Springer: Berlin, Germany, 2005; Volume 1. [Google Scholar]
- Kato, H. Latent heat storage capacity of NiTi shape memory alloy. J. Mater. Sci. 2021, 56, 8243–8250. [Google Scholar] [CrossRef]
- Otubo, J.; Rigo, O.D.; Coelho, A.A.; Neto, C.M.; Mei, P.R. The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy. Mat. Sci. Eng. A 2008, 481, 639–642. [Google Scholar]
- Prokoshkin, S.D.; Korotitskiy, A.V.; Brailovski, V.; Turenne, S.; Khmelevskaya, I.Y.; Trubitsyna, I.B. On the lattice parameters of phases in binary Ti–Ni shape memory alloys. Acta Mater. 2004, 52, 4479–4492. [Google Scholar] [CrossRef]
- Khalil-Allafi, J.; Dlouhy, A.; Eggeler, G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 2002, 50, 4255–4274. [Google Scholar] [CrossRef]
- Khalil-Allafi, J.; Eggeler, G.; Schmahl, W.W.; Sheptyakov, D. Quantitative phase analysis in microstructures which display multiple step martensitic transformations in Ni-rich NiTi shape memory alloys. Mater. Sci. Eng. A 2006, 438, 593–596. [Google Scholar] [CrossRef]
- Eftifeeva, A.S.; Panchenko, E.Y.; Fatkullin, I.D.; Volochaev, M.N.; Tagiltsev, A.I.; Chumlyakov, Y.I. The Cyclic Stability of Superelasticity in Aged Ti49.3Ni50.7 Single Crystals with Oxide Surface. Metals 2022, 12, 2113. [Google Scholar] [CrossRef]
- Shen, J.J.; Lu, N.H.; Chen, C.H. Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation. Mater. Sci. Eng. A 2020, 788, 139554. [Google Scholar] [CrossRef]
- Yamazaki, T.; Montagnoli, A.L.; Young, M.L.; Takeuchi, I. Tuning the temperature range of superelastic Ni-Ti alloys for elastocaloric cooling via thermal processing. J. Phys. Energy 2023, 5, 024020. [Google Scholar] [CrossRef]
- Niitsu, K.; Kimura, Y.; Kainuma, R. Transformation entropy change and precursorphenomenon in Ni-rich Ti-Ni shape memory alloys. J. Mater. Res. 2017, 32, 3822–3830. [Google Scholar] [CrossRef]
- Sun, B.; Fu, M.W.; Lin, J.; Ning, Y.Q. Effect of low-temperature aging treatment on thermally-and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 2017, 131, 49–59. [Google Scholar] [CrossRef]
Aging Mode | Cooling, °C | Heating, °C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, °C | Ms | Mf | As | Af | |||||||
Time, h | |||||||||||
Original | 0 | - | - | −29 | −35 | - | - | - | −11 | −5 | 6 |
300 | 1 | 29 | 19 | −65 | −78 | 94 | −17 | −6 | 26 | 33 | 50 |
5 | 34 | 30 | −71 | −83 | 105 | −16 | −5 | 37 | 40 | 56 | |
10 | 36 | 31 | −71 | −85 | 107 | −15 | −3 | 38 | 42 | 57 | |
20 | 40 | 30 | −63 | −80 | 103 | −10 | 2 | 40 | 45 | 55 | |
430 | 1 | 43 | 27 | −22 | −27 | 65 | 8 | * | * | 45 | 37 |
5 | 45 | 36 | −24 | −40 | 69 | 33 | * | * | 47 | 14 | |
10 | 45 | 35 | −8 | −21 | 53 | - | - | 40 | 51 | 11 | |
20 | 46 | 39 | 3 | −3 | 43 | - | - | 47 | 54 | 7 | |
500 | 1 | 25 | 19 | −5 | −39 | 30 | 23 | - | - | 38 | 15 |
5 | 25 | 19 | −2 | −7 | 27 | 25 | * | * | 39 | 14 | |
10 | 25 | 20 | 5 | −1 | 20 | 30 | * | * | 42 | 12 | |
20 | 26 | 21 | 9 | 2 | 17 | 37 | * | * | 45 | 8 |
Aging Mode | Functional and Mechanical Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
°C | h | |||||||
700 | 1 | Test temp., °C | –196 | –29 * | 20 | - | 60 | 100 |
σtr, MPa | 325 | 120 | Not defined | |||||
, MPa | 600 | 400 | ||||||
Δσ, MPa | 275 | 280 | ||||||
δ, % | 17 | 13 | ||||||
300 | 1 | Test temp., °C | –196 | –65 * | 20 | - | 60 | 100 |
σtr, MPa | 200 | 80 | 420 | - | 560 | 750 | ||
σy, MPa | 750 | 700 | 680 | - | 700 | 850 | ||
Δσ, MPa | 550 | 620 | 260 | - | 140 | 100 | ||
δ, % | 17 | 17 | 17 | 17 | 20 | 60 | ||
10 | Test temp., °C | –196 | –71 * | 20 | 36 ** | 60 | 100 | |
σtr, MPa | 150 | 40 | 400 | 450 | 600 | 780 | ||
, MPa | 750 | 750 | 650 | 720 | 700 | 900 | ||
Δσ, MPa | 600 | 710 | 250 | 270 | 100 | 120 | ||
δ, % | 16 | 17 | 12 | 15 | 17 | 50 | ||
20 | Test temp., °C | –196 | –63 * | 20 | 40 ** | 60 | 100 | |
σtr, MPa | 140 | 40 | 350 | 450 | 550 | 700 | ||
, MPa | 850 | 750 | 600 | 700 | 700 | 850 | ||
Δσ, MPa | 610 | 710 | 250 | 250 | 150 | 150 | ||
δ, % | 16 | 16 | 12 | 16 | 17 | 30 | ||
430 | 1 | Test temp., °C | –196 | –22 * | 20 | 43 ** | 60 | 100 |
σtr, MPa | 350 | 90 | 290 | 370 | 460 | 700 | ||
, MPa | 900 | 800 | 780 | 800 | 800 | 880 | ||
Δσ, MPa | 550 | 710 | 490 | 430 | 340 | 180 | ||
δ, % | 17 | 18 | 13 | 16 | 17 | 27 | ||
10 | Test temp., °C | –196 | –21 * | 20 | 46 ** | 60 | 100 | |
σtr, MPa | 400 | 150 | 200 | 310 | 380 | 650 | ||
, MPa | 900 | 800 | 800 | 800 | 800 | 900 | ||
Δσ, MPa | 500 | 650 | 600 | 490 | 420 | 250 | ||
δ, % | 17 | 14 | 13 | 15 | 17 | 25 | ||
20 | Test temp., °C | –196 | 3 * | - | 46 ** | 60 | 100 | |
σtr, MPa | 400 | 130 | - | 280 | 400 | 650 | ||
, MPa | 900 | 780 | - | 780 | 780 | 850 | ||
Δσ, MPa | 500 | 650 | - | 500 | 380 | 200 | ||
δ, % | 15 | 15 | - | 15 | 18 | 25 | ||
500 | 1 | Test temp., °C | –196 | –5 * | 20 | 32 | 60 | 100 |
σtr, MPa | 350 | 100 | 280 | 340 | 500 | 600 | ||
, MPa | 800 | 750 | 750 | 750 | 800 | 800 | ||
Δσ, MPa | 450 | 650 | 470 | 410 | 300 | 200 | ||
δ, % | 17 | 15 | 13 | - | 17 | 35 | ||
10 | Test temp., °C | –196 | 5 * | 20 | - | 60 | 100 | |
σtr, MPa | 500 | 150 | 150 | - | 500 | 600 | ||
, MPa | 820 | 700 | 700 | - | 750 | 800 | ||
Δσ, MPa | 320 | 550 | 550 | - | 250 | 200 | ||
δ, % | 17 | 16 | 12 | - | 26 | 40 | ||
20 | Test temp., °C | –196 | 9 * | 20 | - | 60 | 100 | |
σtr, MPa | 450 | 150 | 150 | - | 430 | 600 | ||
, MPa | 820 | 700 | 700 | - | 700 | 750 | ||
Δσ, MPa | 370 | 550 | 550 | - | 270 | 150 | ||
δ, % | 14 | 15 | 12 | - | 22 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryklina, E.; Polyakova, K.; Komarov, V.; Murygin, S.; Konopatsky, A.; Andreev, V.; Ulanov, A. On Transformation and Stress–Strain–Temperature Behavior of Fine-Grained Ni-Rich NiTi Wire vs. Aging Mode. Metals 2025, 15, 3. https://doi.org/10.3390/met15010003
Ryklina E, Polyakova K, Komarov V, Murygin S, Konopatsky A, Andreev V, Ulanov A. On Transformation and Stress–Strain–Temperature Behavior of Fine-Grained Ni-Rich NiTi Wire vs. Aging Mode. Metals. 2025; 15(1):3. https://doi.org/10.3390/met15010003
Chicago/Turabian StyleRyklina, Elena, Kristina Polyakova, Victor Komarov, Semen Murygin, Anton Konopatsky, Vladimir Andreev, and Adilet Ulanov. 2025. "On Transformation and Stress–Strain–Temperature Behavior of Fine-Grained Ni-Rich NiTi Wire vs. Aging Mode" Metals 15, no. 1: 3. https://doi.org/10.3390/met15010003
APA StyleRyklina, E., Polyakova, K., Komarov, V., Murygin, S., Konopatsky, A., Andreev, V., & Ulanov, A. (2025). On Transformation and Stress–Strain–Temperature Behavior of Fine-Grained Ni-Rich NiTi Wire vs. Aging Mode. Metals, 15(1), 3. https://doi.org/10.3390/met15010003