Microstructure Evolution of Alloy 800H during Cold Rolling and Subsequent Annealing
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Cold Rolling and Heat Treatments
2.3. Microstructure Characterization
3. Results
3.1. As-Received Microstructure
3.2. Cold-Rolled Microstructure
3.2.1. Microstructure of Cold Rolling Plan A
3.2.2. Microstructure of Cold Rolling Plan B
3.2.3. Microstructure of Cold Rolling Plan C
3.3. Annealed Microstructure
3.3.1. Microstructure of Annealing Plan A
3.3.2. Microstructure of Annealing Plan B
3.3.3. Microstructure of Annealing Plan C
4. Discussion
5. Conclusions
- -
- Cracks were observed in the cross-rolled plates, while such cracks did not appear in the unidirectionally rolled plates, which indicated better ductility during the unidirectional rolling process. The difference between the two different rolling methods was explained by the evolution of Schmit factors during the deformation.
- -
- A higher volume fraction of large, deformed grains was observed in the cross-rolled plates than in the unidirectionally rolled plates. The higher the amount of unidirectional rolling before cross-rolling is performed, the higher the fraction of small, deformed grains observed in the final deformed plates. Abnormal grain growth was observed in the cross-rolled specimens after annealing while no abnormal grain growth was seen in the unidirectionally rolled ones.
- -
- Recrystallization occurred faster in plates from unidirectional rolling than from cross-rolling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beardsley, A.L.; Bishop, C.M.; Kral, M.V. A Deformation Mechanism Map for Incoloy 800H Optimized Using the Genetic Algorithm. Metall. Mater. Trans. A 2019, 50, 4098–4110. [Google Scholar] [CrossRef]
- Wright, J.K.; Carroll, L.J.; Cabet, C.; Lillo, T.M.; Benz, J.K.; Simpson, J.A.; Lloyd, W.R.; Chapman, J.A.; Wright, R.N. Characterization of elevated temperature properties of heat exchanger and steam generator alloys. Nucl. Eng. Des. 2012, 251, 252–260. [Google Scholar] [CrossRef]
- Dai, C.; Wang, Q.; Prudil, A.; Li, W.; Walters, L. Radiation-induced segregation at grain boundaries of alloy 800H: Experimentally-informed atomistic simulations. J. Nucl. Mater. 2023, 579, 154395. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, P.; Wang, H.; Ji, J.; Wang, T.; Wang, Y.; Wang, X. Thermal Deformation Characteristics and Dynamic Recrystallization Mechanism of Incoloy 800H Alloy under Different Deformations. Adv. Eng. Mater. 2023, 25, 2300810. [Google Scholar] [CrossRef]
- Su, H.; Sun, D.; Jiang, Y.; Shi, Y.; Zhang, L.; Chen, K.; Andresen, P.L. Investigation on the corrosion behavior of Alloy 800H at various levels of deformation. Corros. Sci. 2023, 212, 110926. [Google Scholar] [CrossRef]
- Weng, W.; Biesiekierski, A.; Yang, C.; Zhang, Z.; Wen, C.; Wang, M.; Lv, Q.; Zhu, X. Microstructural evolution of 800H alloy after long-time creep rupture test at 675 °C. Mater. Charact. 2023, 205, 113352. [Google Scholar] [CrossRef]
- Ren, W.; Swindeman, R. A review of Alloy 800H for applications in the Gen IV nuclear energy systems. Press. Vessel. Pip. Conf. 2010, 49255, 821–836. [Google Scholar]
- Li, H.; Zhang, H.; Zheng, W.; Du, B.; Yin, H.; He, X.; Ma, T.; Yang, X. Study on oxidation kinetics of three kinds of candidate superalloys for VHTR under air ingress accident. Ann. Nucl. Energy 2023, 189, 109844. [Google Scholar] [CrossRef]
- Us, H. Oxidation Behavior of Very High Temperature Reactor (VHTR) Candidate Materials: 316l Stainless Steel, Alloy 617, and Incoloy-800H. Doctoral Dissertation, University of Missouri, Columbia, MO, USA, 2016. [Google Scholar]
- Xiao, L.; Li, W.; Cota-Sanchez, G. Mechanical property and microstructure characterization of incoloy 800H alloy and its welds after corrosion testing in high temperature steam. Nucl. Eng. Des. 2022, 398, 111970. [Google Scholar] [CrossRef]
- Dong, Q.; Li, W.; Xiao, L.; Walters, L.; Ienzi, M.; Sloan, R. Creep fracture behavior of Alloy 800H weldment with Haynes 230 filler metal at 760 °C and 950 °C. Mater. Sci. Eng. A, 2024; to be submitted. [Google Scholar]
- Li, W.; Xiao, L.; Walters, L.; Dong, Q.; Ienzi, M.; Sloan, R. High-temperature creep and microstructure evolution of alloy 800H weldments with Inconel 625 and Haynes 230 filler materials. Appl. Sci. 2024, 14, 1347. [Google Scholar] [CrossRef]
- Swindeman, R.W.; Zamrik, S.Y.; Maziasz, P.J. Effects of long-term service on the microstructure and tensile properties of alloy 800h. ASME Press. Vessel. Pip. Conf. 2007, 42878, 483–492. [Google Scholar]
- Roy, A.K.; Virupaksha, V. Performance of alloy 800H for high-temperature heat exchanger applications. Mater. Sci. Eng. A 2007, 452–453, 665–672. [Google Scholar] [CrossRef]
- Swindeman, R.W.; Swindeman, M.J.; Ren, W. Can coverage of Alloy 800H in ASME section III subsection NH be extended to 850° C? ASME Press. Vessel. Pip. Conf. 2006, 47578, 521–528. [Google Scholar]
- Wang, J.; Cheng, S.; Wu, Y.; Wang, T.; Qin, X.; Zhou, L. Effect of cold rolling on microstructure, texture, and tensile properties of a Ni-Fe-based superalloy. J. Alloys Compd. 2023, 937, 168383. [Google Scholar] [CrossRef]
- Cao, Y.; Shen, X.; Di, H.; Huang, G. Texture and microstructure evolution of Incoloy 800H superalloy during hot rolling and solution treatment. J. Alloys Compd. 2017, 698, 304–316. [Google Scholar] [CrossRef]
- Akhiani, H.; Nezakat, M.; Szpunar, J.A. Evolution of deformation and annealing textures in Incoloy 800H/HT via different rolling paths and strains. Mater. Sci. Eng. A 2014, 614, 250–263. [Google Scholar] [CrossRef]
- Akhiani, H.; Nezakat, M.; Sonboli, A.; Szpunar, J. The origin of annealing texture in a cold-rolled Incoloy 800H/HT after different strain paths. Mater. Sci. Eng. A 2014, 619, 334–344. [Google Scholar] [CrossRef]
- Chaganty, B.; Maredla, T.; Bobby, S.; Sahoo, S.; Vanitha, C. Effect of Cold Rolling on Texture and Microstructure Development in Annealed Incoloy 800 Fabricated Using Selective Laser Melting. J. Mater. Eng. Perform. 2024, 1–8. [Google Scholar]
- Frommert, M.; Gottstein, G. Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H. Mater. Sci. Eng. A 2009, 506, 101–110. [Google Scholar] [CrossRef]
- Mizia, R.E.; Clark, D.E.; Glazoff, M.V.; Lister, T.E.; Trowbridge, T.L. Optimizing the diffusion welding process for alloy 800H: Thermodynamic, diffusion modeling, and experimental work. Metall. Mater. Trans. A 2013, 44, 154–161. [Google Scholar] [CrossRef]
- Akhiani, H.; Nezakat, M.; Sanayei, M.; Szpunar, J. The effect of thermo-mechanical processing on grain boundary character distribution in Incoloy 800H/HT. Mater. Sci. Eng. A 2015, 626, 51–60. [Google Scholar] [CrossRef]
- Tan, L.; Rakotojaona, L.; Allen, T.R.; Nanstad, R.K.; Busby, J.T. Microstructure optimization of austenitic Alloy 800H (Fe–21Cr–32Ni). Mater. Sci. Eng. A 2011, 528, 2755–2761. [Google Scholar] [CrossRef]
- Wronski, S.; Wrobel, M.; Baczmanski, A.; Wierzbanowski, K. Effects of cross-rolling on residual stress, texture and plastic anisotropy in f.c.c. and b.c.c. metals. Mater. Charact. 2013, 77, 116–126. [Google Scholar] [CrossRef]
- Bhattacharjee, P.P.; Joshi, M.; Chaudhary, V.P.; Gatti, J.R.; Zaid, M. Texture Evolution During Cross Rolling and Annealing of High-Purity Nickel. Metall. Mater. Trans. A 2013, 44, 2707–2716. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
Element | Ni | Cr | Mo | Co | Mn | Al | Ti | Al + Ti | Cu | Si | S | C | Fe |
Content | 30.3 | 20.6 | 0.7 | 0.05 | 0.7 | 0.49 | 0.52 | 1.01 | 0.09 | 0.4 | <0.002 | 0.08 | Bal. |
Rolling Plan | Process History | Specimen Name |
---|---|---|
Plan A | 75% cross rolling to 0.5 mm | CR75 |
Plan B | 30% unidirectional rolling + cross rolling to 0.5 mm thickness | UR30 + CR |
40% unidirectional rolling + cross rolling to 0.5 mm thickness | UR40 + CR | |
60% unidirectional rolling + cross rolling to 0.5 mm thickness | UR60 + CR | |
Plan C | 40% unidirectional rolling + intermediate annealing + unidirectional rolling to 0.5 mm thickness | UR40 + IA + UR |
50% unidirectional rolling + intermediate annealing + unidirectional rolling to 0.5 mm thickness | UR50 + IA + UR |
Slip System | Schmit Factor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slip Plane | Slip Direction | Goss {110} <001> | Brass {110} <11-2> | Copper {112} <11-1> | S {123} <63-4> | Copper Twin {552} <11-5> | |||||
UR | CR | UR | CR | UR | CR | UR | CR | UR | CR | ||
0 −1 1 | −1 1 1 | 0.41 | 0.41 | 0 | 0.27 | 0.27 | 0.41 | 0.33 | 0.44 | 0.45 | 0.41 |
1 0 1 | −1 1 1 | 0.41 | 0.41 | 0 | 0.27 | 0 | 0.41 | 0.09 | 0.37 | 0.3 | 0.41 |
1 1 0 | −1 1 1 | 0 | 0 | 0 | 0 | 0.27 | 0 | 0.42 | 0.07 | 0.15 | 0 |
0 −1 1 | 1 1 1 | 0.41 | 0 | 0.41 | 0.27 | 0.27 | 0 | 0.23 | 0.06 | 0.27 | 0 |
−1 0 1 | 1 1 1 | 0.41 | 0 | 0.14 | 0 | 0.27 | 0 | 0.33 | 0.02 | 0.27 | 0 |
−1 1 0 | 1 1 1 | 0 | 0 | 0.27 | 0.27 | 0 | 0 | 0.1 | 0.07 | 0 | 0 |
0 1 1 | −1 −1 1 | 0.41 | 0 | 0.14 | 0 | 0 | 0 | 0.09 | 0.09 | 0.42 | 0 |
1 0 1 | −1 −1 1 | 0.41 | 0 | 0.41 | 0.27 | 0 | 0 | 0.17 | 0.17 | 0.42 | 0 |
−1 1 0 | −1 −1 1 | 0 | 0 | 0.27 | 0.27 | 0 | 0 | 0.26 | 0.26 | 0 | 0 |
0 1 1 | 1 −1 1 | 0.41 | 0.41 | 0.27 | 0 | 0 | 0.41 | 0.01 | 0.3 | 0.3 | 0.41 |
−1 0 1 | 1 −1 1 | 0.41 | 0.41 | 0.27 | 0 | 0.27 | 0.41 | 0.07 | 0.18 | 0.45 | 0.41 |
1 1 0 | 1 −1 1 | 0 | 0 | 0 | 0 | 0.27 | 0 | 0.06 | 0.11 | 0.15 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Wang, Q.; Long, F. Microstructure Evolution of Alloy 800H during Cold Rolling and Subsequent Annealing. Metals 2024, 14, 766. https://doi.org/10.3390/met14070766
Dong Q, Wang Q, Long F. Microstructure Evolution of Alloy 800H during Cold Rolling and Subsequent Annealing. Metals. 2024; 14(7):766. https://doi.org/10.3390/met14070766
Chicago/Turabian StyleDong, Qingshan, Qiang Wang, and Fei Long. 2024. "Microstructure Evolution of Alloy 800H during Cold Rolling and Subsequent Annealing" Metals 14, no. 7: 766. https://doi.org/10.3390/met14070766
APA StyleDong, Q., Wang, Q., & Long, F. (2024). Microstructure Evolution of Alloy 800H during Cold Rolling and Subsequent Annealing. Metals, 14(7), 766. https://doi.org/10.3390/met14070766