Adsorption Mechanism, Kinetics, Thermodynamics, and Anticorrosion Performance of a New Thiophene Derivative for C-Steel in a 1.0 M HCl: Experimental and Computational Approaches
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of the Testing Media and the Investigated Surface
2.2. Electrochemical Analysis
2.3. Methodologies for Surface Characterization
2.3.1. Atomic Force Microscopy (AFM) Analysis
2.3.2. Scanning Electron Microscopy (SEM)
2.4. Molecular Dynamic and DFT Computations
2.4.1. DFT Calculations
2.4.2. Simulation of Molecular Dynamics (MD)
3. Results and Analysis
3.1. Potentiodynamic Polarization (PDP) Investigation
3.2. Adsorption Studies
Isotherm | Temp. (K) | Log Kads | R2 | −ΔG°ads (KJ/mol) | −ΔH0ads (KJ/mol) | ΔS°ads (J/mol) |
---|---|---|---|---|---|---|
Langmuir | 298 | 4.77 | 0.998 | 37.16 | 33.85 | 11.12 |
308 | 4.624 | 0.987 | 37.55 | 12.01 | ||
318 | 4.585 | 0.990 | 38.54 | 14.74 | ||
328 | 4.474 | 0.980 | 39.05 | 15.8 | ||
Henry | 298 | 3.95 | 0.997 | 32.49 | 23.58 | 29.899 |
308 | 3.94 | 0.993 | 33.52 | 32.27 | ||
318 | 3.833 | 0.982 | 33.96 | 32.64 | ||
328 | 3.764 | 0.991 | 34.59 | 33.56 |
3.3. Effect of Temperature
3.4. Surface Investigations
3.4.1. SEM Analysis
3.4.2. Analysis with Atomic Force Microscopy (AFM)
3.5. Theoretical Investigations
3.5.1. Calculations of DFT
3.5.2. Molecule Electrostatic Potential (MESP)
3.5.3. Fukui Indices and Mulliken Charges
3.5.4. Calculations Based on Molecular Dynamics
4. Conclusions
- ∗
- The investigated substance was found to prevent carbon steel from corroding in 1.0 M HCl medium and adheres to the Langmuir and Henry isotherms for adsorption, where both isotherms denote both physical and chemical adsorption, but chemical adsorption is the predominant type.
- ∗
- Electrochemical experiments revealed that while the inhibitory efficacy diminishes as the temperature rises, it increases when the concentration of the examined substance increases. This feature facilitates the molecules’ binding on the steel surface.
- ∗
- Potentiodynamic polarization measurements show that the employed inhibitor operates as a mixed-type inhibitor.
- ∗
- SEM and AFM studies substantially validate the electrochemical and theoretical findings, and they also verify the inhibitor’s adsorption of the inhibitor molecules on alloy surfaces.
- ∗
- The investigation’s results and theoretical analysis provided evidence in favor of the claim that the compound is a potent corrosion inhibitor.
- ∗
- According to a Fukui function analysis, the main reactive sites for corrosion inhibitors are phenyl carbon atoms, oxygen, and nitrogen.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Materials science: Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. NPJ Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Fawzy, A.; Toghan, A. Inhibition evaluation of chromotrope dyes for the corrosion of mild steel in acidic environment: Thermodynamic and kinetic aspects. ACS Omega 2021, 6, 4051–4061. [Google Scholar] [CrossRef] [PubMed]
- Toghan, A.; Fawzy, A. Unraveling the Adsorption Mechanism and Anti-Corrosion Functionality of Dextrin and Inulin as Eco-Friendly Biopolymers for the Corrosion of Reinforced Steel in 1.0 M HCl: A Thermodynamic and Kinetic Approach. Polymers 2023, 15, 3144. [Google Scholar] [CrossRef] [PubMed]
- Toghan, A.; Fawzy, A.; Alakhras, A.I.; Farag, A.A. Electrochemical and theoretical examination of some imine compounds as corrosion inhibitors for carbon steel in oil wells formation water. Int. J. Electrochem. Sci. 2022, 17, 2212108. [Google Scholar] [CrossRef]
- Manh, T.D.; Huynh, T.L.; Thi, B.V.; Lee, S.; Yi, J.; Dang, N.N. Corrosion Inhibition of Mild Steel in Hydrochloric Acid Environments Containing Sonneratia caseolaris Leaf Extract. ACS Omega 2022, 7, 8874–8886. [Google Scholar] [CrossRef]
- Alamry, K.A.; Khan, A.; Aslam, J.; Hussein, M.A.; Aslam, R. Corrosion inhibition of mild steel in hydrochloric acid solution by the expired Ampicillin drug. Sci. Rep. 2023, 13, 6724. [Google Scholar] [CrossRef]
- Rahimi, A.; Farhadian, A.; Berisha, A.; Shaabani, A.; Mehmeti, V.; Zhong, X.; Yousefzadeh, S.; Djimasbe, R. Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: An experimental and computational study. Chem. Eng. J. 2022, 446, 136938. [Google Scholar] [CrossRef]
- Dahmani, K.; Galai, M.; Cherkaoui, M.; El Hasnaoui, A.; El Hessni, A. Cinnamon essential oil as a novel eco-friendly corrosion inhibitor of copper in 0.5 M sulfuric acid medium. J. Mater. Environ. Sci. 2017, 8, 1676–1689. [Google Scholar]
- El Hajjaji, F.; Salim, R.; Messali, M.; Hammouti, B.; Chauhan, D.S.; Almutairi, S.M.; Quraishi, M.A. Electrochemical studies on new pyridazinium derivatives as corrosion inhibitors of carbon steel in acidic medium. J. Bio-Tribo-Corros. 2018, 5, 4. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene)rhodamine. Corros. Sci. 2014, 79, 169–176. [Google Scholar] [CrossRef]
- Eldesoky, A.M.; Nozha, S.G. The adsorption and corrosion inhibition of 8-hydroxy-7-quinolinecarboxaldehyde derivatives on Csteel surface in hydrochloric acid. Chin. J. Chem. Eng. 2017, 25, 1256–1265. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Zhang, Y. Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review. Materials 2022, 15, 2023. [Google Scholar] [CrossRef] [PubMed]
- Toghan, A.; Fawzy, A.; Alakhras, A.I.; Sanad, M.M.S.; Khairy, M.; Farag, A.A. Correlating Experimental with Theoretical Studies for a New Ionic Liquid for Inhibiting Corrosion of Carbon Steel during Oil Well Acidification. Metals 2023, 13, 862. [Google Scholar] [CrossRef]
- Akpan, E.D.; Dagdag, O.; Ebenso, E.E. Recent progress on the anticorrosion activities of acridine and acridone derivatives: A review. J. Mol. Liq. 2022, 361, 119686. [Google Scholar] [CrossRef]
- Jiang, L.; Dong, Y.; Yuan, Y.; Zhou, X.; Liu, Y.; Meng, X. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications. Chem. Eng. J. 2022, 430, 132823. [Google Scholar] [CrossRef]
- Cen, H.; Wu, C.; Chen, Z. Co-doped carbon coated MnS/MnO/Mn nanoparticles as a novel corrosion inhibitor for carbon steel in CO2-saturated NaCl solution. Coll. Surf. A 2021, 630, 127528. [Google Scholar] [CrossRef]
- Verma, C.; Alrefaee, S.H.; Quraishi, M.A.; Ebenso, E.E.; Hussain, C.M. Recent developments in sustainable corrosion inhibition using ionic liquids: A review. J. Mol. Liq. 2021, 321, 114484. [Google Scholar] [CrossRef]
- Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Adesina, A.Y.; Saleh, T.A. The synergistic influence of polyethyleneimine-grafted graphene oxide and iodide for the protection of steel in acidizing conditions. RSC Adv. 2020, 10, 17739–17751. [Google Scholar] [CrossRef]
- Cen, H.; Cao, J.; Chen, Z. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution. Corros. Sci. 2020, 177, 109011. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Rhee, K.Y.; Verma, C.; Quraishi, M.A.; Ebenso, E.E. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J. Mol. Liq. 2021, 321, 114666. [Google Scholar] [CrossRef]
- Wang, C.L.; Qian, B. A novel l-histidine based ionic liquid (LHIL) as an efficient corrosion inhibitor for mild steel. RSC Adv. 2022, 12, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Brycki, B.; Szulc, A. Gemini surfactants as corrosion inhibitors. A review. J. Mol. Liq. 2021, 344, 117686. [Google Scholar] [CrossRef]
- Zhong, F.; He, Y.; Wang, P.; Chen, C.; Wu, Y. Novel pHresponsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework. Colloids Surf. A 2022, 642, 128641. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Verma, C.; Abdellattif, M.H.; Alfantazi, A.; Quraishi, M.A. N-heterocycle compounds as aqueous phase corrosioninhibitors: A robust, effective and economic substitute. J. Mol. Liq. 2021, 340, 117211. [Google Scholar] [CrossRef]
- Aslam, R.; Serdaroglu, G.; Zehra, S.; Verma, D.K.; Aslam, J.; Guo, L.; Verma, C.; Ebenso, E.E.; Quraishi, M.A. Corrosion inhibition of steel using different families of organic compounds: Past and present progress. J. Mol. Liq. 2022, 348, 118373. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A. Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: Design and applications. Coord. Chem. Rev. 2021, 446, 214105. [Google Scholar] [CrossRef]
- Alqarni, N.; El-Gammal, B.; Fawzy, A.; Al Bahir, A.; Toghan, A. Investigation of expired ticarcillin and carbenicillin drugs for inhibition of aluminum corrosion in hydrochloric acid solution. Int. J. Electrochem. Sci. 2022, 17, 2212113. [Google Scholar] [CrossRef]
- Toghan, A.; Fawzy, A.; Al Bahir, A.; Alqarni, N.; Sanad, M.M.S.; Khairy, M.; Alakhras, A.I.; Farag, A.A. Computational foretelling and experimental implementation of the performance of polyacrylic acid and polyacrylamide polymers as eco-friendly corrosion inhibitors for Copper in nitric acid. Polymers 2022, 14, 4802. [Google Scholar] [CrossRef]
- Farahati, R.; Mousavi-Khoshdel, S.M.; Ghaffarinejad, A.; Behzadi, H. Experimental and computational study of penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel. Prog. Org. Coat. 2020, 142, 105567. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.; Negrón-Silva, G.; González-Olvera, R.; Ángeles-Beltrán, D.; Palomar-Pardavé, M.; Miralrio, A.; Castro, M. Fluconazole and fragments as corrosion inhibitors of API 5L X52 steel immersed in 1M HCl. Corros. Sci. 2020, 174, 108853. [Google Scholar] [CrossRef]
- Samide, A.; Tutunaru, B.; Negrila, C.; Trandafir, I.; Maxut, A. Effect of sulfacetamide on the composi-tion of corrosion products formed onto carbon steel surface in hydrochloric acid. Dig. J. Nanomater. Bios. 2011, 6, 663–673. [Google Scholar]
- Chen, S.; Chen, S.; Zhu, B.; Huang, C.; Li, W. Magnolia grandiflora leaves extract as a novel environmentally friendly inhibitor for Q235 steel corrosion in 1 M HCl: Combining experimental and theoretical researches. J. Mol. Liq. 2020, 311, 113312. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, B.; Bao, H.; Xie, Y.; Mou, Y.; Li, P.; Chen, D.; Shi, Y.; Li, X.; Yang, W. Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry 2019, 128, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Luft, J.H. Improvements in Epoxy Resin Embedding Methods. J. Cell Biol. 1961, 9, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Damej, M.; Hsissou, R.; Berisha, A.; Azgaou, K.; Sadiku, M.; Benmessaoud, M.; Labjar, N.; El Hajjaji, S. New epoxy resin as a corrosion inhibitor for the protection of carbon steel C38 in 1M HCl experimental and theoretical studies (DFT, MC, and MD). J. Mol. Struct. 2022, 1254, 132425. [Google Scholar] [CrossRef]
- Ouici, H.B.; Benali, O.; Harek, Y.; Larabi, L.; Hammouti, B.; Guendouzi, A. Inhibition of mild steel corrosion in 5% HCl solution by 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione. Res. Chem. Intermed. 2013, 39, 2777–2793. [Google Scholar] [CrossRef]
- Paul, P.K.; Yadav, M. Investigation on corrosion inhibition and adsorption mechanism of triazine-thiourea derivatives at mild steel/HCl solution interface: Electrochemical, XPS, DFT and Monte Carlo simulation approach. J. Electroanal. Chem. 2020, 877, 114599. [Google Scholar] [CrossRef]
- Toghan, A.; Dardeer, H.M.; Gadow, H.S.; Elabbasy, H.M. New promising halogenated cyclic imides derivatives as potential corrosion inhibitors for carbon steel in hydrochloric acid solution. J. Mol. Liq. 2021, 325, 115136. [Google Scholar] [CrossRef]
- Arrousse, N.; Fernine, Y.; Al-Zaqri, N.; Boshaala, A.; Ech-chihbi, E.; Salim, R.; El Hajjaji, F.; Alami, A.; Touhami, M.E.; Taleb, M. Correction: Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium. RSC Adv. 2022, 12, 10321–10335. [Google Scholar] [CrossRef] [PubMed]
- Toghan, A.; Abo-baker, A.M.; Rageh, H.M.; Abd-Elsabour, M. Green electrochemical strategy for one-step synthesis of new catechol derivatives. RSC Adv. 2019, 9, 13145. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J. 2018, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Verma, P.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem. 2019, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, E.; Amer, F.A. Synthesis of some 4-arylazo-3-hydroxythiophene disperse dyes for dyeing polyester fabrics. Mon. Chem. 2008, 139, 561–567. [Google Scholar] [CrossRef]
- ASTM, AST G 31-72; Standard Recommended Practice for the Laboratory Immersion Corrosion Testing of Metals. American Society for Testing and Materials: Philadelphia, PA, USA, 2004.
- Marušić, K.; Otmačić Ćurković, H. Self-Assembling Monolayers of Stearic Acid in Protection of Steel. Croat. Chem. Acta 2018, 91, 427–433. [Google Scholar] [CrossRef]
- Khaled, M.; El-Khalek, A.; Shalabi, K.; Ismail, M.A.; El-Aziz, A.; Fouda, S. 5-Arylidene-1,3-dialkylbarbituric acid derivatives as efficient corrosion inhibitors for carbon steel in molar hydrochloric acid solution. RSC Adv. 2022, 12, 10443–10459. [Google Scholar]
- Eid, A.M.; Shaaban, S.; Shalabi, K. Tetrazole-based organoselenium bi-functionalized corrosion inhibitors during oil well acidizing: Experimental, computational studies, and SRB bioassay. J. Mol. Liq. 2020, 298, 111980. [Google Scholar] [CrossRef]
- Tang, J.; Hu, Y.; Han, Z.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wanmg, Y. Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution. Molecules 2018, 23, 3270. [Google Scholar] [CrossRef]
- Singh, A.K.; Chugh, B.; Thakur, S.; Pani, B.; Lgaz, H.; Chung, I.-M.; Pal, S.; Prakash, R. Green approach of synthesis of thiazolyl imines and their impeding behavior against corrosion of mild steel in acid medium, Colloids Surfaces a Physicochem. Eng. Asp. 2020, 599, 124824. [Google Scholar] [CrossRef]
- Fawzy, A.; Al Bahir, A.; Alqarni, N.; Toghan, A.; Khider, M.; Ibrahim, I.M.; Abulreesh, H.H.; Elbanna, K. Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents. Sci. Rep. 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Zarei, A.; Dehghani, A.; Guo, L.; Ramezanzadeh, B. Pepper extract effectiveness as a natural inhibitor against corrosion of steel samples (SS) in 1 M hydrochloric acid; Theoretical (DFT calculation—MD simulation), thermodynamic, and electrochemical-surface studies. Ind. Crops Prod. 2022, 189, 115839. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Shalabi, K.; Tantawy, A.H. Corrosion inhibition of carbon steel in hydrochloric acid solution using newly synthesized urea-based cationic fluorosurfactants: Experimental and computational investigations. New J. Chem. 2020, 44, 17791–17814. [Google Scholar] [CrossRef]
- Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci. 2009, 51, 1836–1843. [Google Scholar] [CrossRef]
- Fouda, A.S.; Ahmed, R.E.; El-Hossiany, A. Chemical, Electrochemical and Quantum Chemical Studies for Famotidine Drug as a Safe Corrosion Inhibitor for α-Brass in HCl Solution. Prot. Met. Phys. Chem. Surf. 2021, 57, 398–411. [Google Scholar] [CrossRef]
- Migahed, M.A.; Azzam, E.M.S.; Morsy, S.M.I. Electrochemical behaviour of carbon steel in acid chloride solution in the presence of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Corros. Sci. 2009, 51, 1636–1644. [Google Scholar] [CrossRef]
- Fergachi, O.; Benhiba, F.; Rbaa, M.; Ouakki, M.; Galai, M.; Touir, R.; Lakhrissi, B.; Oudda, H.; Touhami, M.E. Corrosion Inhibition of Ordinary Steel in 5.0 M HCl Medium by Benzimidazole Derivatives: Electrochemical, UV–Visible Spectrometry, and DFT Calculations. J. Bio Tribo-Corros. 2019, 5, 21–33. [Google Scholar] [CrossRef]
- Akinbulumo, O.A.; Odejobi, O.J.; Odekanle, E.L. Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results Mater. 2020, 5, 100074. [Google Scholar] [CrossRef]
- Goulart, C.M.; Esteves-Souza, A.; Martinez-Huitle, C.A.; Rodrigues, C.J.F.; Maciel, M.A.M.; Echevarria, A. Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros. Sci. 2013, 67, 281–291. [Google Scholar] [CrossRef]
- Halambek, J.; Cindri, I.; Nin, A.; Date, R.; Date, R.; Date, A.; An, G. Characterization and study the inhibition activity of Luxol fast blue dye on corrosion of carbon steel in 1M H2SO4. J. Pre-Proof 2020, 15, 234. [Google Scholar]
- Boughoues, Y.; Benamira, M.; Messaadia, L.; Ribouh, N. Adsorption and corrosion inhibition performance of some environmental friendly organic inhibitors for mild steel in HCl solution via experimental and theoretical study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 593, 124610. [Google Scholar] [CrossRef]
- Sedik, A.; Lerari, D.; Salci, A.; Athmani, S.; Bachari, K.; Dardagan, İ.H. Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. J. Taiwan Inst. Chem. Eng. 2020, 107, 189–200. [Google Scholar] [CrossRef]
- Muthukrishnan, P.; Prakash, P.; Shankar, K.; Kathiresan, A. Azo Schiff Base as Antiscaling Agent for Mild Steel in Hydrochloric Acid: Electrochemical, Non-electrochemical, and DFT Studies. J. Bio-Tribo-Corros. 2019, 5, 12. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Benmahammed, I.; Douadi, T.; Issaadi, S.; Al-Noaimi, M.; Chafaa, S. Heterocyclic Schiff bases as corrosion inhibitors for carbon steel in 1 M HCl solution: Hydrodynamic and synergetic effect. J. Dispers. Sci. Technol. 2019, 41, 1002–1021. [Google Scholar] [CrossRef]
- Al Bahir, A. Estimation of the performances of creatine and creatinine as eco-friendly corrosion inhibitors for copper in sodium hydroxide solution. Int. J. Electrochem. Sci. 2023, 18, 100040. [Google Scholar] [CrossRef]
- Mazumder; Synthesis, M.A.J. Characterization and electrochemical analysis of cysteine modified polymers for corrosion inhibition of mild steel in aqueous 1 M HCl. RSC Adv. 2019, 9, 4277–4294. [Google Scholar] [CrossRef] [PubMed]
- Sliem, M.H.; Afifi, M.; Radwan, A.B.; Fayyad, E.M.; Shibl, M.F.; Heakal, F.E.T.; Abdullah, A.M. AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Sci. Rep. 2019, 9, 2319. [Google Scholar] [CrossRef]
- Abdallah, Y.M.; Shalabi, K.; Bayoumy, N.M. Eco-friendly synthesis, biological activity and evaluation of some new pyridopyrimidinone derivatives as corrosion inhibitors for API 5L X52 carbon steel in 5% sulfamic acid medium. J. Mol. Struct. 2018, 1171, 658–671. [Google Scholar] [CrossRef]
- Gece, G.; Bilgiç, S. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros. Sci. 2009, 51, 1876–1878. [Google Scholar] [CrossRef]
- Bedair, M.A.; El-Sabbah, M.M.B.; Fouda, A.S.; Elaryian, H.M. Synthesis, electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium. Corros. Sci. 2017, 128, 54–72. [Google Scholar] [CrossRef]
- Nazari, M.H.; Shihab, M.S.; Havens, E.A.; Shi, X. Mechanism of corrosion protection in chloride solution by an apple-based green inhibitor: Experimental and theoretical studies. J. Infrastruct. Preserv. Resil. 2020, 1, 7–25. [Google Scholar] [CrossRef]
- El Kacimi, Y.; Touir, R.; Alaoui, K.; Kaya, S.; Abousalem, A.S.; Ouakki, M.; Touhami, M.E. Anti-corrosion Properties of 2-Phenyl-4(3H)-quinazolinone-Substituted Compounds: Electrochemical, Quantum Chemical, Monte Carlo, and Molecular Dynamic Simulation Investigation. J. Bio-Tribo-Corros. 2020, 6, 47–71. [Google Scholar] [CrossRef]
- Koumya, Y.; Idouhli, R.; Oukhrib, A.; Khadiri, M.; Abouelfida, A.; Benyaich, A. Synthesis, Electrochemical, Thermodynamic, and Quantum Chemical Investigations of Amino Cadalene as a Corrosion Inhibitor for Stainless Steel Type 321 in Sulfuric Acid 1M. Int. J. Electrochem. 2020, 2020, 5620530–5620540. [Google Scholar] [CrossRef]
- Kumar, S.R.; RashvandAvei, M.; Vijayan, M. Novel metal complexes as antimicrobial and anticorrosion in acid media. Mater. Res. 2020, 23, e20180610. [Google Scholar]
- Mert, B.D.; Mert, M.E.; Kardas, G.; Yazici, B. Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros. Sci. 2011, 53, 4265–4272. [Google Scholar] [CrossRef]
- Londonkar, R.; Kamble, A.; Reddy, V.C. Anti-Inflammatory Activity of Pandanus odoratissimus Extract. Int. J. Pharm. 2010, 6, 311–314. [Google Scholar] [CrossRef]
- Ansari, K.R.; Ramkumar, S.; Nalini, D.; Quraishi, M.A. Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid. Cogent Chem. 2016, 2, 1145032–1145045. [Google Scholar] [CrossRef]
- Vu, H.N.; Hien, P.; Mathesh, M.; Thu, V.; Nam, N. Improved Corrosion Resistance of Steel in Ethanol Fuel Blend by Titania Nanoparticles and Aganonerion polymorphum Leaf Extract. ACS Omega 2019, 4, 146–158. [Google Scholar]
- Lukovits, I.; Lalman, E.; Zucchi, F. Corrosion Inhibitors—Correlation between Electronic Structure and Efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Zhang, Y.; Wang, L.-J.; Wu, Y.-C.; Li, H.J. 9-Substituted acridines as effective corrosion inhibitors for mild steel: Electrochemical, surface morphology, and computational studies. New J. Chem. 2020, 44, 6464–6474. [Google Scholar] [CrossRef]
- Mary, Y.S.; Panicker, C.Y.; Sapnakumari, M.; Narayana, B.; Sarojini, B.K.; Saadi, A.A.A.; Van Alsenoy, C.; War, J.A. FT-IR, NBO, HOMO–LUMO, MEP analysis and molecular docking study of 1-[3-(4-Fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethenone. Spectrochim. Acta Part A 2015, 136, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Babu, P.D.S.; Periandy, S.; Fereyduni, E. Spectrochim. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Acta Part A 2011, 84, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Boughoues, Y.; Benamira, M.; Messaadia, L.; Bouider, N.; Abdelaziz, S. Experimental and theoretical investigations of four amine derivatives as effective corrosion inhibitors for mild steel in HCl medium. RSC Adv. 2020, 10, 24145–24158. [Google Scholar] [CrossRef] [PubMed]
- Madkour, L.H.; Kaya, S.; Obot, I.B. Computational, Monte Carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process. J. Mol. Liq. 2018, 260, 351–374. [Google Scholar] [CrossRef]
- Shalabi, K.; Helmy, A.M.; El-Askalany, A.H.; Shahba, M.M. New pyridinium bromide mono-cationic surfactant as corrosion inhibitor for carbon steel during chemical cleaning: Experimental and theoretical studies. J. Mol. Liq. 2019, 293, 111480. [Google Scholar] [CrossRef]
- Özcan, M.; Dehri, İ.; Erbil, M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: Correlation between inhibition efficiency and chemical structure. Appl. Surf. Sci. 2004, 236, 155–164. [Google Scholar] [CrossRef]
- Toghan, A.; Fawzy, A.; Alakhras, A.I.; Alqarni, N.; Zaki, M.E.A.; Sanad, M.M.S.; Farag, A.A. Experimental exploration, RSM modeling and DFT/MD simulations of the anticorrosion performance of naturally occurring amygdalin and raffinose for aluminum in NaOH solution. Coatings 2023, 13, 704. [Google Scholar] [CrossRef]
- Farag, A.A.; Abdallah, H.E.; Badr, E.A.; Mohamed, E.A.; Ali, A.I.; El-Etre, A.Y. The inhibition performance of morpholinium derivatives on corrosion behavior of carbon steel in the acidized formation water: Theoretical, experimental and biocidal evaluations. J. Mol. Liq. 2021, 341, 117348. [Google Scholar] [CrossRef]
- Farag, A.A.; Eid, A.M.; Shaban, M.M.; Mohamed, E.A.; Raju, G. Integrated modeling, surface, electrochemical, and biocidal investigations of novel benzothiazoles as corrosion inhibitors for shale formation well stimulation. J. Mol. Liq. 2021, 336, 116315. [Google Scholar] [CrossRef]
- Toghan, A.; Khairy, M.; Huang, M.; Gadow, H.S. Electrochemical, surface analysis, and theoretical investigation of 3-hydroxy-5-(phenylamino)-4-(p-tolyldiazenyl)thiophen-2-yl)(phenyl) methanone as a corrosion inhibitor for carbon steel in a molar hydrochloric acid solution. Int. J. Electrochem. Sci. 2023, 18, 100070. [Google Scholar] [CrossRef]
- Dagdag, O.; Safi, Z.; Erramli, H.; Cherkaoui, O.; Wazzan, N.; Guo, L.; Verma, C.; Ebenso, E.E.; El Harfi, A. Adsorption and anticorrosive behavior of aromatic epoxy monomers on carbon steel corrosion in acidic solution: Computational studies and sustained experimental studies. RSC Adv. 2019, 9, 14782–14796. [Google Scholar] [CrossRef] [PubMed]
Temp. K | Inh. Conc. M | Ecorr mV(SCE) | Icorr μA/cm2 | −βc mVdec−1 | βa mVdec−1 | θ | % IE | C.R (mm/Year) |
---|---|---|---|---|---|---|---|---|
25 °C | 0 | −441 | 9370 | 164 ± 4 | 161 ± 2 | --- | --- | 108.654 |
5 × 10−7 | −421 | 2445.76 | 158 ± 2 | 113 ± 2 | 0.739 | 73.9 | 28.361 | |
1 × 10−6 | −404 | 2411.46 | 152 ± 2 | 163 ± 3 | 0.743 | 74.26 | 27.963 | |
5 × 10−6 | −372 | 2171.59 | 137 ± 3 | 146 ± 3 | 0.768 | 76.82 | 25.182 | |
1 × 10−5 | −395 | 1850.74 | 135 ± 1 | 133 ± 2 | 0.803 | 80.25 | 22.781 | |
5 × 10−5 | −441 | 273.79 | 86 ± 0.7 | 97 ± 0.9 | 0.971 | 97.10 | 3.175 | |
35 °C | 0 | −483 | 39,700 | 162 ± 3 | 164 ± 3 | --- | --- | 460.359 |
5 × 10−7 | −426 | 20,448.28 | 156 ± 3 | 155 ± 3 | 0.485 | 48.49 | 237.117 | |
1 × 10−6 | −408 | 19,620.14 | 152 ± 4 | 159 ± 2 | 0.506 | 50.58 | 227.514 | |
5 × 10−6 | −376 | 17,528.74 | 147 ± 2 | 162 ± 3 | 0.558 | 55.85 | 199.182 | |
1 × 10−5 | −392 | 15,911.76 | 135 ± 3 | 153 ± 2 | 0.599 | 59.92 | 184.512 | |
5 × 10−5 | −446 | 6000.32 | 123 ± 2 | 120 ± 2 | 0.849 | 84.89 | 12.779 | |
45 °C | 0 | −475 | 47,900 | 174 ± 4 | 162 ± 3 | --- | --- | 555.446 |
5 × 10−7 | −450 | 25,185.34 | 163 ± 2 | 167 ± 2 | 0.474 | 47.42 | 292.048 | |
1 × 10−6 | −430 | 23,836.96 | 144 ± 3 | 162 ± 3 | 0.502 | 50.24 | 276.412 | |
5 × 10−6 | −413 | 22,127.88 | 136 ± 2 | 157 ± 4 | 0.538 | 53.80 | 267.182 | |
1 × 10−5 | −380 | 19,914.90 | 125 ± 1 | 154 ± 2 | 0.584 | 58.42 | 230.932 | |
5 × 10−5 | −398 | 8076.90 | 111 ± 3 | 134 ± 2 | 0.831 | 83.14 | 93.659 | |
55 °C | 0 | −462 | 60,600 | 166 ± 2 | 145 ± 2 | --- | --- | 702.715 |
5 × 10−7 | −453 | 35,812.78 | 162 ± 3 | 123 ± 3 | 0.409 | 40.90 | 415.284 | |
1 × 10−6 | −433 | 34,562.60 | 143 ± 3 | 163 ± 4 | 0.430 | 42.97 | 400.787 | |
5 × 10−6 | −416 | 31,770.76 | 123 ± 2 | 144 ± 3 | 0.476 | 47.57 | 367.182 | |
1 × 10−5 | −383 | 28,395.34 | 119 ± 2 | 163 ± 3 | 0.531 | 53.14 | 329.271 | |
5 × 10−5 | −401 | 15,984.57 | 116 ± 2 | 152 ± 2 | 0.736 | 73.62 | 102.793 |
Comp. conc. (M) | E*a KJ mol−1 | −ΔH* KJ mol−1 | −ΔS*J mol−1 k−1 | log A |
---|---|---|---|---|
Blank | 37.52 | 35.77 | 980.39 | 9.57 |
5 × 10−7 | 83.48 | 83.98 | 856.83 | 12.98 |
1 × 10−6 | 84.14 | 84.67 | 851.09 | 14.18 |
5 × 10−6 | 91.33 | 91.87 | 843.43 | 14.79 |
1 × 10−5 | 91.9 | 92.2 | 833.86 | 15.78 |
5 × 10−5 | 94.77 | 94.99 | 810.88 | 17.78 |
Models | Sq(nm) | Sa(nm) | Maximum Peak- to-Valley Height (nm) |
---|---|---|---|
Alloy free | 24.791 | 21.54 | 133.05 |
Substrate in 1 M HCl | 592.05 | 486.76 | 3842.0 |
Substrate + 1MHCl + 5 × 10−5 M inhibitor | 213.2 | 187.40 | 3652.8 |
Liquid | Neutral | Protonated |
---|---|---|
−EHOMO (eV) | −5.088 | −4.047 |
−ELUMO (eV) | −3.631 | −3.864 |
ΔE (eV) | 1.457 | 0.183 |
η (eV) | 0.729 | 0.092 |
σ (eV)−1 | 1.37 | 10.87 |
Pi (eV) | −4.36 | −3.96 |
(eV) | 4.36 | 3.96 |
dipole moment (debyes) | 15.6051 | 30.6926 |
Molecular area (Å2) | 432.11 | 438.855 |
∆Nmax (e) | −0.054 | 1.74 |
Factor | Neutral | Protonated | Vacuum |
---|---|---|---|
Total energy (kcal/mol) | −4934.314 | −4939.977 | −196.544 |
Adsorption energy (kcal/mol) | −4964.036 | −4975.76 | −226.242 |
Rigid adsorption energy (kcal/mol) | −5143.159 | −5154.99 | −233.159 |
Deformation energy (kcal/mol) | 179.122 | 179.227 | 6.917 |
dEad/dNi (kcal/mol) | −234.58 | −186.48 | −226.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toghan, A.; Gadow, H.S.; Fawzy, A.; Alhussain, H.; Salah, H. Adsorption Mechanism, Kinetics, Thermodynamics, and Anticorrosion Performance of a New Thiophene Derivative for C-Steel in a 1.0 M HCl: Experimental and Computational Approaches. Metals 2023, 13, 1565. https://doi.org/10.3390/met13091565
Toghan A, Gadow HS, Fawzy A, Alhussain H, Salah H. Adsorption Mechanism, Kinetics, Thermodynamics, and Anticorrosion Performance of a New Thiophene Derivative for C-Steel in a 1.0 M HCl: Experimental and Computational Approaches. Metals. 2023; 13(9):1565. https://doi.org/10.3390/met13091565
Chicago/Turabian StyleToghan, Arafat, H. S. Gadow, Ahmed Fawzy, Hanan Alhussain, and H. Salah. 2023. "Adsorption Mechanism, Kinetics, Thermodynamics, and Anticorrosion Performance of a New Thiophene Derivative for C-Steel in a 1.0 M HCl: Experimental and Computational Approaches" Metals 13, no. 9: 1565. https://doi.org/10.3390/met13091565
APA StyleToghan, A., Gadow, H. S., Fawzy, A., Alhussain, H., & Salah, H. (2023). Adsorption Mechanism, Kinetics, Thermodynamics, and Anticorrosion Performance of a New Thiophene Derivative for C-Steel in a 1.0 M HCl: Experimental and Computational Approaches. Metals, 13(9), 1565. https://doi.org/10.3390/met13091565