Compact Aluminium Foam Heat Exchangers
Abstract
1. Introduction
2. Methodology
2.1. Manufacturing
2.2. Experimentation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Analysis of Experimental Uncertainty
Property | Sensor Type | Uncertainty |
---|---|---|
Temperature | Type K thermocouple | ±0.4 K |
Mass flow | Cynergy3 UF25B | ±5% |
References
- García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Iasiello, M.; Bianco, N.; Chiu, W.K.; Naso, V. Anisotropic convective heat transfer in open-cell metal foams: Assessment and correlations. Int. J. Heat Mass Transf. 2020, 154, 119682. [Google Scholar] [CrossRef]
- Jeng, T.-M.; Tzeng, S.-C.; Xu, R. Experimental study of heat transfer characteristics in a 180-deg round turned channel with discrete aluminum-foam blocks. Int. J. Heat Mass Transf. 2014, 71, 133–141. [Google Scholar] [CrossRef]
- Nawaz, K.; Bock, J.; Jacobi, A.M. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions. Appl. Therm. Eng. 2017, 119, 222–232. [Google Scholar] [CrossRef]
- Aljubury, I.M.A.; Saihood, R.G.; Farhan, A.A. Experimental study on thermo-hydraulic performance of metal foam twisted tape in a double pipe heat exchanger. Heat Transf. 2022, 51, 7910–7928. [Google Scholar] [CrossRef]
- Tamkhade, P.K.; Lande, R.D.; Gurav, R.B.; Lele, M.M. Investigations on tube in tube metal foam heat exchanger. Mater. Today Proc. 2022, 72, 951–957. [Google Scholar] [CrossRef]
- Chen, T.; Shu, G.; Tian, H.; Zhao, T.; Zhang, H.; Zhang, Z. Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery. Appl. Energy 2020, 266, 114875. [Google Scholar] [CrossRef]
- Sahiti, N.; Durst, F.; Dewan, A. Strategy for selection of elements for heat transfer enhancement. Int. J. Heat Mass Transf. 2006, 49, 3392–3400. [Google Scholar] [CrossRef]
- Samudre, P.; Kailas, S.V. Thermal performance enhancement in open-pore metal foam and foam-fin heat sinks for electronics cooling. Appl. Therm. Eng. 2022, 205, 117885. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, C.; Tassou, S. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. Int. J. Heat Mass Transf. 2006, 49, 2751–2761. [Google Scholar] [CrossRef]
- Ambrosio, G.; Bianco, N.; Chiu, W.K.; Iasiello, M.; Naso, V.; Oliviero, M. The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Appl. Therm. Eng. 2016, 103, 333–343. [Google Scholar] [CrossRef]
- Nilpueng, K.; Asirvatham, L.G.; Dalkılıç, A.S.; Mahian, O.; Ahn, H.S.; Wongwises, S. Heat transfer and fluid flow characteristics in a plate heat exchanger filled with copper foam. Heat Mass Transf. 2020, 56, 3261–3271. [Google Scholar] [CrossRef]
- Tan, W.C.; Saw, L.H.; Thiam, H.S.; Garg, A.; Pambudi, N.A. Numerical study of the geometrically graded metal foam for concentrated photovoltaic solar cell cooling. Energy Procedia 2019, 158, 761–766. [Google Scholar] [CrossRef]
- Kotresha, B.; Gnanasekaran, N. Numerical Simulations of Fluid Flow and Heat Transfer through Aluminum and Copper Metal Foam Heat Exchanger—A Comparative Study. Heat Transf. Eng. 2018, 41, 637–649. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Xiao, S.; Zhao, Y.; Li, J.; Zhou, J.; Ouyang, Q. Effect of structural characteristics on the natural convective heat transfer performance of copper foam. Appl. Therm. Eng. 2022, 204, 118031. [Google Scholar] [CrossRef]
- Şahin, Y.S.; Toprak, B.I.; Solmaz, I.; Bayer, O. Investigation of flow and heat transfer behavior of integrated pin fin-aluminum foam heat sink. Appl. Therm. Eng. 2023, 219, 119504. [Google Scholar] [CrossRef]
- Mancin, S.; Zilio, C.; Rossetto, L.; Cavallini, A. Foam height effects on heat transfer performance of 20 ppi aluminum foams. Appl. Therm. Eng. 2012, 49, 55–60. [Google Scholar] [CrossRef]
- Kamath, P.M.; Balaji, C.; Venkateshan, S. Convection heat transfer from aluminium and copper foams in a vertical channel—An experimental study. Int. J. Therm. Sci. 2013, 64, 1–10. [Google Scholar] [CrossRef]
- Durmus, F.; Maiorano, L.; Molina, J. Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications. Int. J. Heat Mass Transf. 2022, 191, 122852. [Google Scholar] [CrossRef]
- Fiedler, T.; Moore, R.; Movahedi, N. Manufacturing and Characterization of Tube-Filled ZA27 Metal Foam Heat Exchangers. Metals 2021, 11, 1277. [Google Scholar] [CrossRef]
- Hamzah, J.A.; Nima, M.A. Experimental Study of Heat Transfer Enhancement in Double-Pipe Heat Exchanger Integrated with Metal Foam Fins. Arab. J. Sci. Eng. 2020, 45, 5153–5167. [Google Scholar] [CrossRef]
- Odabaee, M.; Hooman, K. Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 2012, 36, 456–463. [Google Scholar] [CrossRef]
- Al-Sahlani, K.; Broxtermann, S.; Lell, D.; Fiedler, T. Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams. Mater. Sci. Eng. A 2018, 728, 80–87. [Google Scholar] [CrossRef]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 9th ed.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- ASM International Handbook Committee. Metals Handbook, Vol. 2—Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed.; ASM International: Novelty, OH, USA, 1990. [Google Scholar]
- Electronics Cooling—Design, Materials, Compounds, Adhesives, Substrates, Number 2, Technical Data, Volume 7.
[L/min] | [L/min] | [kW] |
---|---|---|
1.0 | 1.0, 2.0, 3.0 | 3.06 |
2.0 | 1.0 | 3.06 |
2.0 | 2.0, 3.0 | 6.12 |
3.0 | 1.0 | 3.06 |
3.0 | 2.0 | 6.12 |
3.0 | 3.0 | 9.17 |
Copper Tube | A356 Foam | |||||
---|---|---|---|---|---|---|
[L/min] | 1.0 | 2.0 | 3.0 | 1.0 | 2.0 | 3.0 |
L/min | 8.1% | 10.8% | 12.2% | 34.8% | 42.1% | 45.9% |
L/min | 8.3% | 6.6% | 7.3% | 42.4% | 27.1% | 28.8% |
L/min | 9.7% | 6.8% | 5.8% | 48.1% | 28.2% | 19.5% |
Temperature | Volumetric Flow Rate | ||
---|---|---|---|
1.0 L/min | 2.0 L/min | 3.0 L/min | |
20.0 °C | 1.14 kPa | 3.90 kPa | 7.52 kPa |
30.0 °C | 1.30 kPa | 4.13 kPa | 7.89 kPa |
40.0 °C | 1.15 kPa | 3.92 kPa | 7.34 kPa |
50.0 °C | 1.21 kPa | 3.78 kPa | 7.18 kPa |
60.0 °C | 1.13 kPa | 3.59 kPa | 6.85 kPa |
Average | 1.19 kPa | 3.86 kPa | 7.36 kPa |
StDev | 0.07 kPa | 0.20 kPa | 0.39 kPa |
Hot Stream Flow Rate [L/min] | ||||
---|---|---|---|---|
1.0 | 2.0 | 3.0 | ||
Pressure drop [kPa] | 1.19 | 0.90 | 1.09 | 1.18 |
3.86 | 0.34 | 0.43 | 0.46 | |
7.36 | 0.20 | 0.23 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiedler, T.; Movahedi, N. Compact Aluminium Foam Heat Exchangers. Metals 2023, 13, 1440. https://doi.org/10.3390/met13081440
Fiedler T, Movahedi N. Compact Aluminium Foam Heat Exchangers. Metals. 2023; 13(8):1440. https://doi.org/10.3390/met13081440
Chicago/Turabian StyleFiedler, Thomas, and Nima Movahedi. 2023. "Compact Aluminium Foam Heat Exchangers" Metals 13, no. 8: 1440. https://doi.org/10.3390/met13081440
APA StyleFiedler, T., & Movahedi, N. (2023). Compact Aluminium Foam Heat Exchangers. Metals, 13(8), 1440. https://doi.org/10.3390/met13081440