Failure Analysis of Duplex Stainless Steel for Heat Exchanger Tubes with Seawater Cooling Medium
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Visual Examination
3.2. Chemical Composition
3.3. Hardness Test
3.4. Seawater Examination
3.5. Scale Examination
3.6. Fractography Examination
3.7. Microstructural Examination
4. Discussion
4.1. Galvanic Corrosion
4.2. Crevice Corrosion
4.3. Microbially Induced Corrosion
OH− + HCO3− → H2O + CO3−2
CO3−2 + Ca+2 → CaCO3
CaSO4 (s) → Ca+2 (aq) + 2 SO4−2 (aq)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweitzer, P.A. Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Shifler, D.A. La Que’s Handbook on Marine Corrosion; Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Balaji, C.; Srinivasan, B.; Gedupudi, S. Chapter 7—Heat Exchangers. In Heat Transfer Engineering; Balaji, C., Srinivasan, B., Gedupudi, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 199–231. ISBN 978-0-12-818503-2. [Google Scholar]
- Morales, M.; Chimenos, J.M.; Fernández, A.I.; Segarra, M. Materials Selection for Superheater Tubes in Municipal Solid Waste Incineration Plants. J. Mater. Eng. Perform. 2014, 23, 3207–3214. [Google Scholar] [CrossRef] [Green Version]
- Moura, V.S.; Lima, L.D.; Pardal, J.M.; Kina, A.Y.; Corte, R.R.A.; Tavares, S.S.M. Influence of Microstructure on the Corrosion Resistance of the Duplex Stainless Steel UNS S31803. Mater. Charact. 2008, 59, 1127–1132. [Google Scholar] [CrossRef]
- Farrer, J.C.M. The Alloy Tree, A Guide to Low-Alloy Steels, Stainless Steels and Nickel-Base Alloys; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ravindranath, K.; Tanoli, N.; Gopal, H. Failure Investigation of Brass Heat Exchanger Tube. Eng. Fail. Anal. 2012, 26, 332–336. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Alves, G.S. Failure Analysis of a Heat-Exchanger Serpentine. Eng. Fail. Anal. 2005, 12, 193–200. [Google Scholar] [CrossRef]
- Jones, D.R.H. Creep Failures of Overheated Boiler, Superheater and Reformer Tubes. Eng. Fail. Anal. 2004, 11, 873–893. [Google Scholar] [CrossRef]
- Psyllaki, P.P.; Pantazopoulos, G.; Lefakis, H. Metallurgical Evaluation of Creep-Failed Superheater Tubes. Eng. Fail. Anal. 2009, 16, 1420–1431. [Google Scholar] [CrossRef]
- Kain, V.; Chandra, K.; Sharma, B.P. Failure of Carbon Steel Tubes in a Fluidized Bed Combustor. Eng. Fail. Anal. 2008, 15, 182–187. [Google Scholar] [CrossRef]
- Al Arada, M.; Al Otaibi, M. Evaluation of High Temperature Hydrogen Attack Effect on Carbon Steel—0.5 Mo Heat Exchanger. In Proceedings of the NACE—International Corrosion Conference Series, San Antonio, TX, USA, 9–13 March 2014. [Google Scholar]
- Otegui, J.L.; Fazzini, P.G. Failure Analysis of Tube–Tubesheet Welds in Cracked Gas Heat Exchangers. Eng. Fail. Anal. 2004, 11, 903–913. [Google Scholar] [CrossRef]
- Corleto, C.R.; Argade, G.R. Failure Analysis of Dissimilar Weld in Heat Exchanger. Case Stud. Eng. Fail. Anal. 2017, 9, 27–34. [Google Scholar] [CrossRef]
- Liu, L.; Ding, N.; Shi, J.; Xu, N.; Guo, W.; Wu, C.M.L. Failure Analysis of Tube-to-Tubesheet Welded Joints in a Shell-Tube Heat Exchanger. Case Stud. Eng. Fail. Anal. 2016, 7, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Goyder, H.G.D. Flow-Induced Vibration in Heat Exchangers. Chem. Eng. Res. Des. 2002, 80, 226–232. [Google Scholar] [CrossRef]
- Kuźnicka, B. Erosion-Corrosion of Heat Exchanger Tubes. Eng. Fail. Anal. 2009, 16, 2382–2387. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.-G.; Yuan, J.-Z. Failure Analysis of Leakage on Titanium Tubes within Heat Exchangers in a Nuclear Power Plant. Part II: Mechanical Degradation. Mater. Corros. 2012, 63, 18–28. [Google Scholar] [CrossRef]
- Xu, S.; Wang, C.; Wang, W. Failure Analysis of Stress Corrosion Cracking in Heat Exchanger Tubes during Start-up Operation. Eng. Fail. Anal. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Adnyana, D.N. Failure Analysis of Stainless Steel Heat Exchanger Tubes in a Petrochemical Plant. J. Fail. Anal. Prev. 2018, 18, 413–422. [Google Scholar] [CrossRef]
- Khodamorad, S.H.; Alinezhad, N.; Fatmehsari, D.H.; Ghahtan, K. Stress Corrosion Cracking in Type.316 Plates of a Heat Exchanger. Case Stud. Eng. Fail. Anal. 2016, 5, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Al-Nabulsi, K.M.; Rizk, T.Y.; Al-Abbas, F.M.; Dias, O.C. Sea Water Cooler Tubes Corrosion and Leaks Due to Microbiologically Induced Corrosion. In Proceedings of the NACE—International Corrosion Conference Series, Vancouver, BC, Canada, 6–10 March 2016; Volume 1, pp. 141–148. [Google Scholar]
- Abraham, G.J.; Kain, V.; Dey, G.K. MIC Failure of Cupronickel Condenser Tube in Fresh Water Application. Eng. Fail. Anal. 2009, 16, 934–943. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Honkanen, M.; Lepistö, T.; Kuokkala, V.-T.; Koivisto, L.; Berg, C.-G. Microbiologically Influenced Corrosion (MIC) in Stainless Steel Heat Exchanger. Appl. Surf. Sci. 2012, 258, 6512–6526. [Google Scholar] [CrossRef]
- Sharma, P. Microbiological-Influenced Corrosion Failure of a Heat Exchanger Tube of a Fertilizer Plant. J. Fail. Anal. Prev. 2014, 14, 314–317. [Google Scholar] [CrossRef]
- ASTM E384-22; Standard Test Method for Microindentation Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ASTM E3-11(2017); Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM A790/A790M-23; Standard Specification For Seamless And Welded Ferritic/Austenitic Stainless Steel Pipe. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Millero, F.J.; Huang, F. The Density of Seawater as a Function of Salinity (5 to 70 g Kg−1) and Temperature (273.15 to 363.15 K). Ocean. Sci. 2009, 5, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, B.M.; Haber, M.J.; Dejong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of Environmental Factors on Microbial Induced Calcium Carbonate Precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef]
- Liu, Y.; Ali, A.; Su, J.-F.; Li, K.; Hu, R.-Z.; Wang, Z. Microbial-Induced Calcium Carbonate Precipitation: Influencing Factors, Nucleation Pathways, and Application in Waste Water Remediation. Sci. Total Environ. 2023, 860, 160439. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, C.; Wang, X.; Yang, J.; He, C. Corrosion Behaviors of 2205 Duplex Stainless Steel in Biotic and Abiotic NaCl Solutions. Constr. Build. Mater. 2022, 342, 127699. [Google Scholar] [CrossRef]
- Lin, W.; Gao, Y.; Lin, W.; Zhuo, Z.; Wu, W.; Cheng, X. Seawater-Based Bio-Cementation of Natural Sea Sand via Microbially Induced Carbonate Precipitation. Environ. Technol. Innov. 2023, 29, 103010. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Rajala, P.; Marja-aho, M.; Maukonen, J.; Sohlberg, E.; Carpén, L. Ennoblement, Corrosion, and Biofouling in Brackish Seawater: Comparison between Six Stainless Steel Grades. Bioelectrochemistry 2018, 120, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shao, J.; Liu, Z.; Zhang, D.; Cui, L.; Du, C.; Li, X. Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria. Corros. Sci. 2020, 173, 108746. [Google Scholar] [CrossRef]
- Cui, L.Y.; Liu, Z.Y.; Xu, D.K.; Hu, P.; Shao, J.M.; Du, C.W.; Li, X.G. The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization. Corros. Sci. 2020, 174, 108842. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Cheng, G.; Zhu, W. Pitting Corrosion Behavior of 316L Stainless Steel in the Media of Sulphate-Reducing and Iron-Oxidizing Bacteria. Mater. Charact. 2008, 59, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S. Preferential Dissolution Mechanism of α or γ Phase in Crevice Corrosion of Duplex Stainless Steels. Zair. Kankyo/Corros. Eng. 2016, 65, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Azzam, M.; Khalifa, W. Investigation of Duplex Stainless Steel Flow Line Failure. Eng. Fail. Anal. 2023, 143, 106935. [Google Scholar] [CrossRef]
- Nuñez de la Rosa, Y.E.; Calabokis, O.P.; Pena Uris, G.M.; Borges, P.C. Pitting and Crevice Corrosion Behavior of the Duplex Stainless Steel UNS S32205 Welded by Using the GTAW Process. Mater. Res. 2022, 25, e20220179. [Google Scholar] [CrossRef]
- Machuca, L.L.; Bailey, S.I.; Gubner, R.; Watkin, E.L.J.; Ginige, M.P.; Kaksonen, A.H.; Heidersbach, K. Effect of Oxygen and Biofilms on Crevice Corrosion of UNS S31803 and UNS N08825 in Natural Seawater. Corros. Sci. 2013, 67, 242–255. [Google Scholar] [CrossRef]
- Revie, R.W. Uhlig’s Corrosion Handbook, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Blackwood, D.J.; Lim, C.S.; Teo, S.L.M.; Hu, X.; Pang, J. Macrofouling Induced Localized Corrosion of Stainless Steel in Singapore Seawater. Corros. Sci. 2017, 129, 152–160. [Google Scholar] [CrossRef]
- Papavinasam, S. Chapter 6—Modeling—Internal Corrosion. In Corrosion Control in the Oil and Gas Industry; Papavinasam, S., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 301–360. ISBN 978-0-12-397022-0. [Google Scholar]
- Gunn, R.N. 1—Developments, Grades and Specifications. In Duplex Stainless Steels; Gunn, R.N., Ed.; Woodhead Publishing: Cambridge, UK, 1997; pp. 1–13. ISBN 978-1-85573-318-3. [Google Scholar]
- Makhlouf, A.S.H.; Botello, M.A. Chapter 1—Failure of the Metallic Structures Due to Microbiologically Induced Corrosion and the Techniques for Protection. In Handbook of Materials Failure Analysis; Makhlouf, A.S.H., Aliofkhazraei, M., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 1–18. ISBN 978-0-08-101928-3. [Google Scholar]
- Schütze, M. Corrosion Books: Handbook of Corrosion Engineering. By Pierre R. Roberge—Materials and Corrosion 4/2002. Mater. Corros. 2002, 53, 284. [Google Scholar] [CrossRef]
Part Number | Part Name |
---|---|
1 | Stationary Head-Bonnet |
2 | Stationary Head Flange-Channel or Bonnet |
3 | Stationary Head Nozzle |
4 | Stationary Tube Sheet |
5 | Tubes |
6 | Shell |
7 | Shell Nozzle |
8 | Expansion Joint |
9 | Support Plates |
Chemical Composition | Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
Component | C | Si | S | P | Mn | Ni | Cr | Mo | Fe |
Tube | 0.029 | 0.355 | 0.007 | 0.031 | 0.453 | 6.781 | 24.602 | 3.713 | Balance |
Tube Sheet | 0.046 | 0.338 | 0.001 | 0.019 | 1.571 | 5.128 | 21.558 | 3.226 | Balance |
UNS S31803 | ≤0.03 | ≤1.00 | <0.020 | <0.030 | ≤2.00 | 4.50–6.50 | 21–23 | 2.50–3.50 | Balance |
Mechanical Properties | |
---|---|
Yield Strength | ≥450 MPa (65,000 psi) |
Tensile Strength | ≥620 MPa (90,000 psi) |
Elongation | ≥25% |
Hardness | ≥290 HBW ≡ 305 VHN |
Component | Measurement | Average |
---|---|---|
Tube | 270, 256, 256, 256, 270 | 262 ± 8.0 |
Tube sheet | 231, 220, 270, 220, 231 | 234 ± 21 |
ITEM | Unit | Discharge Cooler | Discharge Cooling Pump |
---|---|---|---|
P-Alkalinity, CaCO3 | mg/L | 5 | 5 |
M-Alkalinity, CaCO3 | mg/L | 124 | 129 |
Chloride, Cl | mg/L | 18130 | 18479 |
Sulfate, SO4 | mg/L | 2663 | 2716 |
Phosphate, PO4 | mg/L | 0.4 | 0.8 |
pH | - | 8.16 | 8.19 |
Conductivity | mS/cm | 65.5 | 63.9 |
Total Dissolved Solid | mg/L | 32625 | 31797 |
Total Suspended Liquid | mg/L | 78.80 | 62.6 |
Material | Cr | Mo | Ni | N | PREN |
---|---|---|---|---|---|
UNS S31803 | 21.00–23.00 | 2.5–3.5 | 4.5–6.5 | 0.08–0.20 | 38 |
UNS S32750 | 24.00–26.00 | 3.0–5.0 | 6.0–8.0 | 0.24–0.32 | 41 |
UNS S32760 | 24.00–26.00 | 3.0–4.0 | 6.0–8.0 | 0.20–0.30 | ≥40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardy, H.; Albatros, T.; Sumboja, A. Failure Analysis of Duplex Stainless Steel for Heat Exchanger Tubes with Seawater Cooling Medium. Metals 2023, 13, 1182. https://doi.org/10.3390/met13071182
Ardy H, Albatros T, Sumboja A. Failure Analysis of Duplex Stainless Steel for Heat Exchanger Tubes with Seawater Cooling Medium. Metals. 2023; 13(7):1182. https://doi.org/10.3390/met13071182
Chicago/Turabian StyleArdy, Husaini, Thomas Albatros, and Afriyanti Sumboja. 2023. "Failure Analysis of Duplex Stainless Steel for Heat Exchanger Tubes with Seawater Cooling Medium" Metals 13, no. 7: 1182. https://doi.org/10.3390/met13071182