Copper Oxide Nitrogen-Rich Porous Carbon Network Boosts High-Performance Supercapacitors
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Procedure
2.2. Characterization
2.3. Electrochemical Measurement
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Li, D.; Liu, H.; Wang, C.; Wang, Y.; Chen, Y.; Linghu, Y.; Tian, Z.; Song, H.; Zhou, J.; et al. Devisable three-dimensional Cu2Se nanoarrays boosts high rate Na-Ion storage. Appl. Surf. Sci. 2023, 612, 155725. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Liu, H.; Wang, X.; Lu, Y.; Wang, C.; Guo, L. CoSe2 nanoparticles anchored on porous carbon network structure for efficient Na-ion storage. J. Colloid Interface Sci. 2023, 634, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, J.; Chen, X.; Song, H. Graphene-Loaded Bi2Se3: A Conversion–Alloying-Type Anode Material for Ultrafast Gravimetric and Volumetric Na Storage. ACS Appl. Mater. Interfaces 2018, 10, 30379–30387. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, J.; Wang, C.; Guo, L.; Zhou, J. Metal-organic framework-induced edge-riched growth of layered Bi2Se3 towards ultrafast Na-ion storage. J. Power Sources 2023, 555, 232387. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Chen, X.; Song, H. Amorphous Fe2O3/Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery. ACS Appl. Mater. Interfaces 2016, 8, 30899–30907. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Chen, X.; Song, H. Achieving Ultrafast and Stable Na-Ion Storage in FeSe2 Nanorods/Graphene Anodes by Controlling the Surface Oxide. ACS Appl. Mater. Interfaces 2018, 10, 22841–22850. [Google Scholar] [CrossRef]
- Hu, J.-R.; Zhou, J.-W.; Jia, Y.-X.; Li, S. Cu-Modified Biomass-Derived Activated Carbons for High Performance Supercapacitors. New Carbon Mater. 2022, 37, 412–421. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chen, Y.; Wang, C.; Guo, L. NiCo-MOF Nanosheets Wrapping Polypyrrole Nanotubes for High-Performance Supercapacitors. Appl. Surf. Sci. 2020, 507, 145089. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, H.; Zhao, P.; Hou, H.; Guo, L. Acetylene Black Enhancing the Electrochemical Performance of NiCo-MOF Nanosheets for Supercapacitor Electrodes. Appl. Surf. Sci. 2019, 492, 455–463. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Z.; Qu, L. Graphene-Based Fibers: Recent Advances in Preparation and Application. Adv. Mater. 2019, 32, 1901979. [Google Scholar] [CrossRef]
- Huang, Y.; Quan, L.; Liu, T.; Chen, Q.; Cai, D.; Zhan, H. Construction of MOF-Derived Hollow Ni–Zn–Co–S Nanosword Arrays as Binder-Free Electrodes for Asymmetric Supercapacitors with High Energy Density. Nanoscale 2018, 10, 14171–14181. [Google Scholar] [CrossRef]
- Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M. Supercapacitors: Properties and Applications. J. Energy Storage 2018, 17, 224–227. [Google Scholar] [CrossRef]
- Han, X.; Xiao, G.; Wang, Y.; Chen, X.; Duan, G.; Wu, Y.; Gong, X.; Wang, H. Design and Fabrication of Conductive Polymer Hydrogels and Their Applications in Flexible Supercapacitors. J. Mater. Chem. A 2020, 8, 23059–23095. [Google Scholar] [CrossRef]
- Li, L.; Meng, J.; Zhang, M.; Liu, T.; Zhang, C. Recent Advances in Conductive Polymer Hydrogel Composites and Nanocomposites for Flexible Electrochemical Supercapacitors. Chem. Commun. 2022, 58, 185–207. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Du, X.; Wang, J.; Ma, H.; Jing, X. Polypyrrole Composites with Carbon Materials for Supercapacitors. Chem. Pap. 2017, 71, 293–316. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, M.; Li, X. Carbon Nanomaterials and Their Composites for Supercapacitors. Carbon Energy 2022, 4, 950–985. [Google Scholar] [CrossRef]
- Qin, F.; Tian, X.; Guo, Z.; Shen, W. Asphaltene-Based Porous Carbon Nanosheet as Electrode for Supercapacitor. ACS Sustain. Chem. Eng. 2018, 6, 15708–15719. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, J.; Dong, S.; Zhang, Y.; An, Y.; Ding, B.; Zhang, T.; Dou, H.; Zhang, X. Biomass-Derived Porous Carbon Electrodes for High-Performance Supercapacitors. J. Mater. Sci. 2020, 55, 5166–5176. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, F.; Wei, K.; Zhai, B.; Yu, C. Controlled Synthesis of Porous Carbons and their Electrochemical Performance for Supercapacitors. Chem. Phys. Lett. 2022, 806, 140066. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; Kaverlavani, S.K.; Shamsi, J.; Bakouei, A. Hierarchical Multi-Shelled Nanoporous Mixed Copper Cobalt Phosphide Hollow Microspheres as a Novel Advanced Electrode for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2017, 5, 18429–18433. [Google Scholar] [CrossRef]
- Wen, T.; Wu, X.-L.; Zhang, S.; Wang, X.; Xu, A.-W. Core–Shell Carbon-Coated CuO Nanocomposites: A Highly Stable Electrode Material for Supercapacitors and Lithium-Ion Batteries. Chem. Asian J. 2015, 10, 595–601. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, L.; Kang, S.; Yin, C.; Ma, Z.; Cui, L.; Wang, Y. CuO/Cu2O Nanowire Arrays Grafted by Reduced Graphene Oxide: Synthesis, Characterization, and Application in Photocatalytic Reduction of CO2. RSC Adv. 2017, 7, 43642–43647. [Google Scholar] [CrossRef][Green Version]
- Zhang, L.; Candelaria, S.L.; Tian, J.; Li, Y.; Huang, Y.-X.; Cao, G. Copper Nanocrystal Modified Activated Carbon for Supercapacitors with Enhanced Volumetric Energy and Power Density. J. Power Sources 2013, 236, 215–223. [Google Scholar] [CrossRef]
- Li, Z.-X.; Yang, B.-L.; Zou, K.-Y.; Kong, L.; Yue, M.-L.; Duan, H.-H. Novel Porous Carbon Nanosheet Derived from a 2D Cu-MOF: Ultrahigh Porosity and Excellent Performances in the Supercapacitor Cell. Carbon 2019, 144, 540–548. [Google Scholar] [CrossRef]
- Wang, J.; Rao, M.; Ye, C.; Qiu, Y.; Su, W.; Zheng, S.-r.; Fan, J.; Cai, S.-l.; Zhang, W.-G. Cu-MOF Derived Cu–C Nanocomposites towards High Performance Electrochemical Supercapacitors. RSC Adv. 2020, 10, 4621–4629. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sirisomboonchai, S.; Kongparakul, S.; Nueangnoraj, K.; Zhang, H.; Wei, L.; Reubroycharoen, P.; Guan, G.; Samart, C. Enhanced Electrochemical Performances with a Copper/Xylose-Based Carbon Composite Electrode. Appl. Surf. Sci. 2018, 436, 639–645. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, J.; Xia, L.; Wu, H.; Xie, F.; Zheng, Q.; Xu, C.; Lin, D. Nitrogen-Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for High-Performance Supercapacitors. ChemElectroChem 2017, 4, 3181–3187. [Google Scholar] [CrossRef]
- Muñoz-Márquez, M.Á.; Saurel, D.; Gómez-Cámer, J.L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Adv. Energy Mater. 2017, 7, 1700463. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Zhou, J.; Song, H. Nitrogen-Rich Carbon-Onion-Constructed Nanosheets: An Ultrafast and Ultrastable Dual Anode Material for Sodium and Potassium Storage. J. Mater. Chem. A 2019, 7, 18499–18509. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Song, H. 2D Zn-Hexamine Coordination Frameworks and Their Derived N-Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage. Adv. Energy Mater. 2018, 8, 1800569. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Zhang, W.; Wang, J.; Liu, Z.; Zeng, S.; Xu, R.; Wu, Y.; Ye, S.; Feng, Y.; et al. Three-Dimensional Ordered Macroporous Metal-Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Lett. 2019, 19, 4965–4973. [Google Scholar] [CrossRef]
- Liu, B.; Cao, J.; Li, J.; Li, L.; Chen, D.; Zhang, S.; Cai, D.; Han, W. Highly Conductive Co3Se4 Embedded in N-doped 3D Interconnected Carbonaceous Network for Enhanced Lithium and Sodium Storage. J. Colloid Interface Sci. 2021, 586, 630–639. [Google Scholar] [CrossRef]
- Sasikala, S.P.; Huang, K.; Giroire, B.; Prabhakaran, P.; Henry, L.; Penicaud, A.; Poulin, P.; Aymonier, C. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia. ACS Appl. Mater. Interfaces 2016, 8, 30964–30971. [Google Scholar] [CrossRef]
- Wang, H.; Dai, H. Strongly Coupled Inorganic–Nano-Carbon Hybrid Materials for Energy Storage. Chem. Soc. Rev. 2013, 42, 3088–3113. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, K.; Zhou, J. Cobalt Telluride/Graphene Composite Nanosheets for Excellent Gravimetric and Volumetric Na-Ion Storage. J. Mater. Chem. A 2018, 6, 6335–6343. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Y.; Hui, K.S.; Hui, K.N.; Lee, S.C.; Jun, S.C. High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures. Adv. Sci. 2018, 5, 1800733. [Google Scholar] [CrossRef][Green Version]
- Liu, W.; Mei, J.; Liu, G.; Kou, Q.; Yi, T.; Xiao, S. Nitrogen-Doped Hierarchical Porous Carbon from Wheat Straw for Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11595–11605. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Liu, H.; Chen, Y.; Wang, C.; Guo, L. A NiCoSex/CG Heterostructure with Strong Interfacial Interaction Showing Rapid Diffusion Kinetics as a Flexible Anode for High-Rate Sodium Storage. Dalton Trans. 2023, 52, 5192–5201. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Q.; Zheng, K.; Qin, J.; Zhou, D.; Wang, J. Impact of Lithium Salts on the Combustion Characteristics of Electrolyte Under Diverse Pressures. Energies 2020, 13, 5373. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Maslakov, K.I.; Savilov, S.V. Nitrogen Doping of Mesoporous Graphene Nanoflakes as a Way to Enhance Their Electrochemical Performance in Ionic Liquid-Based Supercapacitors. J. Energy Storage 2020, 30, 101464. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase Change Materials Application in Battery Thermal Management System: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, J.; Hao, J.; Xue, F.; Gu, Y.; Zhu, Z.; Li, Q. Exploration of Fast Ion Diffusion Kinetics in Graphene Nanoscrolls Encapsulated CoSe2 as Advanced Anode for High-Rate Sodium-Ion Batteries. Carbon 2021, 181, 69–78. [Google Scholar] [CrossRef]
- Xu, D.; Huang, G.; Guo, L.; Chen, Y.; Ding, C.; Liu, C. Enhancement of Catalytic Combustion and Thermolysis for Treating Polyethylene Plastic Waste. Adv. Compos. Hybrid Mater. 2022, 5, 113–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, S.; Li, Y.; Zhang, S.; Wu, Y.; Ma, M.; Tao, C.; Zhang, Z.; Qin, D.; Xie, E. 2.6 V Aqueous Symmetric Supercapacitors Based on Phosphorus-Doped TiO2 Nanotube Arrays. Dalton Trans. 2020, 49, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Liu, C.; Huang, Q. Simulation on Fire Emergency Evacuation in Special Subway Station Based on Pathfinder. Case Stud. Therm. Eng. 2020, 21, 100677. [Google Scholar] [CrossRef]
C (wt%) | N (wt%) | Cu (wt%) | O (wt%) | |
---|---|---|---|---|
CuxO@NPC | 16.8 | 10.7 | 66.3 | 6.2 |
Samples | N-6 (%) | N-5 (%) | N-Q (%) | N-O (%) |
---|---|---|---|---|
CuxO@NPC | 46.2 | 8.2 | 29.2 | 16.5 |
NPC | 31.7 | 9.5 | 43.4 | 15.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Liu, H.; Liu, Z.; Huang, Q.; Lu, B.; Wang, Y.; Wang, C.; Guo, L. Copper Oxide Nitrogen-Rich Porous Carbon Network Boosts High-Performance Supercapacitors. Metals 2023, 13, 981. https://doi.org/10.3390/met13050981
Li D, Liu H, Liu Z, Huang Q, Lu B, Wang Y, Wang C, Guo L. Copper Oxide Nitrogen-Rich Porous Carbon Network Boosts High-Performance Supercapacitors. Metals. 2023; 13(5):981. https://doi.org/10.3390/met13050981
Chicago/Turabian StyleLi, Dan, Hanhao Liu, Zijie Liu, Que Huang, Beihu Lu, Yanzhong Wang, Chao Wang, and Li Guo. 2023. "Copper Oxide Nitrogen-Rich Porous Carbon Network Boosts High-Performance Supercapacitors" Metals 13, no. 5: 981. https://doi.org/10.3390/met13050981
APA StyleLi, D., Liu, H., Liu, Z., Huang, Q., Lu, B., Wang, Y., Wang, C., & Guo, L. (2023). Copper Oxide Nitrogen-Rich Porous Carbon Network Boosts High-Performance Supercapacitors. Metals, 13(5), 981. https://doi.org/10.3390/met13050981