Characteristic Flow Behavior and Processing Map of a Novel Lean Si Spring Steel for Automotive Stabilizer Bars
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Flow Characteristics
3.2. Constitutive Equation
3.3. Processing Maps
3.3.1. Establishment of a Processing Map
3.3.2. Strain Rate Sensitivity Index m
3.3.3. Power Dissipation Efficiency
3.3.4. Processing Maps
4. Conclusions
- (1)
- The flow characteristic of the experimental steel was strongly dictated by deformation parameters such as thermal processing temperature and strain rate. The flow stress and corresponding peak stress increased as the thermal temperature decreased and the strain rate increased. The DRX behavior was attributed to various thermomechanical process parameters, and the low strain rate and high thermal processing temperature facilitated it occurring.
- (2)
- The average thermal activation energy Q at various strain rates was determined to be 297.503 KJ/mol. The Arrhenius constitutive model was developed for the prediction of the metallic flow behaviors. The flow stress expression of the experimental steel 55Cr3 connected to the strain rate and thermal processing temperature were characterized as = 3.425694 × 1011 [sinh(0.009671σ)]5.31796 × exp[−297503/(RT)].
- (3)
- The strain rate sensitivity index, power dissipation coefficient, and instability criterion must be comprehensively considered to identify the stable and instable areas in the processing maps of the experimental steel 55Cr3. The areas where there was one of the negative values among the m-value, η-value, or -value should be identified as unstable regions.
- (4)
- The power dissipation coefficient η and instability criterion were found to be dependent on thermomechanical parameters. High deformation temperatures and low strain rates contributed to large power dissipation efficiency. The value of a power dissipation coefficient was approximately proportional to the strain, and the peak η-value rose from 0.35 to 0.54 as the true strain increased from 0.1 to 0.7. The desirable parameters of hot processing for the experimental steel at various strains were that the thermal processing temperature ranged from 1000 to 1150 °C and the strain rate was about 0.1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, X. Investigation of Non-Metallic Inclusion Plasticization Control for Automotive Suspension Spring Steel. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2017. [Google Scholar]
- Vasu, M.; Hanumanthappa, S.N. Investigation of Cutting Force Tool Tip Temperature and Surface Roughness during Dry Machining of Spring Steel. Mater. Today Proc. 2018, 5, 7141–7149. [Google Scholar] [CrossRef]
- Kumar, T.V.; Chandrasekaran, M.; Padmanabhan, S.; Saravanan, R. Arunkumar. S. Material and design parameters optimization to enhance the life of Anti-Roll bar of commercial truck. Mater. Today Proc. 2021, 37, 1359–1366. [Google Scholar] [CrossRef]
- Nikhil, M.K.; Daspute, D.H. Dynamic analysis of anti-roll bar. Mater. Today Proc. 2018, 5, 12490–12498. [Google Scholar] [CrossRef]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. Int. J. Adv. Manuf. Technol. 2016, 91, 2031–2048. [Google Scholar] [CrossRef]
- Muniandy, V.; Mohd Samin, P.; Jamaluddin, H.; Rahman, R.A.; Bakar, S.A.A. Double anti-roll bar hardware-in-loop experiment for active anti-roll control system. J. Vibroeng. 2017, 19, 2886–2909. [Google Scholar] [CrossRef] [Green Version]
- Cronje, P.H.; Els, P.S. Improving off-road vehicle handling using an active anti-roll bar. J. Terramech. 2010, 47, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.; Siddiqui, R.A.; Upadhyay, Y.; Prajapati, S. Kinematic and Structural Analysis of Independent type suspension system with Anti-Roll bar for Formula Student Vehicle. Mater. Today Proc. 2022, 56, 2672–2679. [Google Scholar] [CrossRef]
- Vu, V.T.; Sename, O.; Dugard, L.; Gaspar, P. H∞/LPV controller design for an active anti-roll bar system of heavy vehicles using parameter dependent weighting functions. Heliyon 2019, 5, e01827. [Google Scholar] [CrossRef] [Green Version]
- Bayrakceken, H.; Tasgetiren, S.; Aslantas, K. Fracture of an automobile anti-roll bar. Eng. Fail. Anal. 2006, 13, 732–738. [Google Scholar] [CrossRef]
- Vu, V.T.; Gaspar, P. Performance and robustness assessment of H∞ active anti-roll bar control system by using a software environment. IFAC-PapersOnLine 2019, 52, 255–260. [Google Scholar] [CrossRef]
- Akiniwa, Y.; Stanzl-Tschegg, S.; Mayer, H.; Wakita, M.; Tanaka, K. Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime. Int. J. Fatigue 2008, 30, 2057–2063. [Google Scholar] [CrossRef]
- Ionut, G.; Dumitru, N.; Rosca, A.; Craciunoiu, N.; Racila, L.; Copilusi, C. Computation of a torsion spring stabilizer bar rigidity and fatigue resistance. IOP Conf. Ser. Mater. Sci. Eng. 2019, 28, 568–573. [Google Scholar] [CrossRef]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Materials selection of thermoplastic matrices for ‘green’ natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 111–119. [Google Scholar] [CrossRef]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. Int. J. Adv. Manuf. Technol. 2016, 89, 2203–2219. [Google Scholar] [CrossRef]
- Murat, T.M.; Enginar, H.; Eern, E.; Kuralay, N. Reduction of stress concentration at the corner bends of the anti-roll bar by using parametric optimization. Math. Comput. Appl. 2011, 16, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Jian, D.; Changan, N.; Jiahang, D.; Xueguang, C.; Kaihong, K.S.; Xingchuan, X. Hot compression deformation behavior and processing maps of Al–0.5 Mg–0.4 Si–0.1 Cu alloy. J. Mater. Res. Technol. 2022, 19, 4890–4904. [Google Scholar] [CrossRef]
- Zhuangzhuang, Z.; Yuyong, C.; Fantao, K.; Xiaopeng, W. The interrupted hot compression of an as-forged titanium matrix composite: Flow softening behavior and deformation mechanism. J. Mater. Res. Technol. 2022, 20, 821–832. [Google Scholar] [CrossRef]
- Yujing, W.; Liang, Z.; Wenzhou, S.; Li, Y.; Xinmei, Z. Hot working characteristics and dynamic recrystallization of delta-processed superalloy 718. J. Alloys Compd. 2009, 474, 341–346. [Google Scholar] [CrossRef]
- Hongzhi, N.; Yuyong, C.; Shulong, X.; Fantao, K.; Changjiang, Z. High temperature deformation behaviors of Ti-45Al-2Nb-1.5 V-1Mo-Y alloy. Intermetallics 2011, 19, 1767–1774. [Google Scholar] [CrossRef]
- Kumar, G.A.; Ujjwal, P.; Ujjwal, M. Flow stress characteristics and microstructural evolution of cast superalloy 625 during hot deformation. J. Alloys Compd. 2020, 844, 156200. [Google Scholar] [CrossRef]
- Di Schino, A. Analysis of phase transformation in high strength low alloyed steels. Metalurgija 2017, 56, 349–352. [Google Scholar]
- Dongjin, S.; Fan, Z.; Ziyu, H.; Wei, G.; Zulai, L. Constitutive equation and dynamic recovery mechanism of high strength cast Al-Cu-Mn alloy during hot deformation. Mater. Today Commun. 2022, 33, 104199. [Google Scholar] [CrossRef]
- Thomas, A.; El-Wahabi, M.; Cabrera, J.M.; Prado, J.M. High temperature deformation of Inconel 718. J. Mater. Process. Technol. 2006, 177, 469–472. [Google Scholar] [CrossRef]
- Jiaoao, L.; Weihong, Z.; Xin, X.; Leiwen, W.; Xuhui, Z.; Wenru, S. Microstructure evolution and dynamic recrystallisation behaviour in hot deformation of Haynes 214 superalloy. J. Alloys Compd. 2022, 919, 165755. [Google Scholar] [CrossRef]
- Jeffrey, M.V.; van der Willem, M.J.; Lindokuhle, V.N. Determination of Critical Transformation Temperatures for the Optimisation of Spring Steel Heat Treatment Processes. Metals 2021, 11, 1014. [Google Scholar] [CrossRef]
- Deng, L.; Haidong, Z.; Guoai, L.; Xuefeng, T.; Pusong, Y.; Zhao, L.; Xinyun, W.; Junsong, J. Processing map and hot deformation behavior of squeeze cast 6082 aluminum alloy. Trans. Nonferrous Met. Soc. China 2022, 32, 2150–2163. [Google Scholar] [CrossRef]
- Jiao, L.; Miaoquan, L.; Bin, W. The correlation between flow behavior and microstructural evolution of 7050 aluminum alloy. Mater. Sci. Eng. A 2011, 530, 559–564. [Google Scholar] [CrossRef]
- Dahai, L.; Haorui, C.; Liang, Y.; Wenqing, Q.; Zhenghua, G.; Zhilu, W. Study on the dynamic recrystallization mechanisms of GH5188 superalloy during hot compression deformation. J. Alloys Compd. 2022, 895, 162565. [Google Scholar] [CrossRef]
- Yongquan, N.; Tao, W.; Fu, M.W.; Li, M.Z.; Linfeng, W.; Zhao, C.D. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression. Mater. Sci. Eng. A 2015, 642, 187–193. [Google Scholar] [CrossRef]
- Ma, X.; Weidong, Z.; Bin, X.; Yu, S.; Chen, X.; Yuanfei, H. Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterion. Intermetallics 2012, 20, 1–7. [Google Scholar] [CrossRef]
- McQueen, H.J.; Evangelista, E. Forging Hot and Cold: Development through the Ages. In Characterization of Minerals, Metals, and Materials 2014, Proceedings of the a Symposium Sponsored by The Materials Characterization Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society): Held during TMS 2014, 143rd Annual Meeting & Exhibition, San Diego Convention Center, San Diego, CA, USA, 16–20 February 2014; TMS-Minerals, Metals & Materials: San Diego, CA, USA, 2014; pp. 285–296. [Google Scholar]
- Yao, L.; Haibo, X.; Jun, W.; Zhou, L.; Fei, L.; Jian, H.; Jingtao, H.; Zhengyi, J. Characteristic flow behaviour prediction and microstructure analysis of a commercial Si–Cr micro-alloyed spring steel under isothermal compression. Vacuum 2021, 186, 110066. [Google Scholar] [CrossRef]
- Yao, L.; Haibo, X.; Jun, W.; Zhou, L.; Fanghui, J.; Hui, W.; Jingtao, H.; Zhengyi, J. Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel. J. Manuf. Process. 2020, 58, 1171–1181. [Google Scholar] [CrossRef]
- Zhigang, W.; Xin, L.; Feiming, X.; Chaobin, L.; Hongwei, L.; Zhang, Q. Dynamic recrystallization behavior and critical strain of 51CrV4 high-strength spring steel during hot deformation. Jom 2018, 70, 2385–2391. [Google Scholar] [CrossRef]
- Hao, W.; Shengping, W.; Hui, H.; Kunyuan, G.; Xiaolan, W.; Wei, W.; Nie, Z.R. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy. J. Alloys Compd. 2016, 685, 869–880. [Google Scholar] [CrossRef]
- Ying, W.; Qinglin, P.; Yanfang, S.; Chen, L.; Zhifeng, L. Hot deformation and processing maps of X-750 nickel-based superalloy. Mater. Des. 2013, 51, 154–160. [Google Scholar] [CrossRef]
- Huang, A.; Wang, Z.; Liu, X.; Yuan, Q.; Ye, J.; Zhang, Y. Dynamic strain aging and serrated flow behavior of Cr-Ti-B low carbon steel during warm deformation. Mater. Charact. 2021, 172, 110828. [Google Scholar] [CrossRef]
- Seol, J.B.; Kim, J.G.; Na, S.H.; Park, C.G.; Kim, H.S. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high-Mn TRIP steels. Acta Mater. 2017, 131, 187–196. [Google Scholar] [CrossRef]
- Jingwei, Z.; Zhengyi, J.; Guoqing, Z.; Wei, D.; Xin, Z.; Laizhu, J. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures. Met. Mater. Int. 2016, 22, 474–487. [Google Scholar] [CrossRef]
- Mülders, B.; Zehetbauer, M.; Gottstein, G.; Les, P.; Schafler, E. Large strain work hardening in the alloy Al–1Mg–1Mn at low and intermediate deformation temperatures: Experiments and modelling. Mater. Sci. Eng. A 2002, 324, 244–250. [Google Scholar] [CrossRef]
- Alexandrov, I.V.; Valiev, R.Z. Nanostructures from Severe Plastic Deformation and Mechanisms of Large Strain Work Hardening. Nanostruct. Mater. 1999, 12, 709–712. [Google Scholar] [CrossRef]
- Saad, G.; Fayek, S.A.; Fawzy, A.; Soliman, H.N.; Nassr, E. Serrated flow and work hardening characteristic of Al-5356 alloy. J. Alloys Compd. 2010, 502, 139–146. [Google Scholar] [CrossRef]
- Roy, S.; Mordehai, D. Annihilation of edge dislocation loops via climb during nanoindentation. Acta Mater. 2017, 127, 351–358. [Google Scholar] [CrossRef]
- Arsenlis, A.; Cai, W.; Tang, M.; Rhee, M.; Oppelstrup, T.; Hommes, G.; Pierce, T.G.; Bulatov, V.V. Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 2017, 15, 553–595. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, M.; Li, Z.; Jiang, R.; Jiang, H.; Li, L.; Mi, Z. Hot deformation behaviour and processing map of a typical Fe-Mn-Si-Cr steel for automotive body structures. Ironmak. Steelmak. 2018, 45, 937–943. [Google Scholar] [CrossRef]
- Yongcheng, L.; Mingsong, C.; Jue, Z. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput. Mater. Sci. 2008, 42, 470–477. [Google Scholar] [CrossRef]
- Yanhong, X.; Guo, C. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Mater. Sci. Eng. A 2011, 528, 5081–5087. [Google Scholar] [CrossRef]
- Sumantra, M.; Venkataramani, R.; Venkata, S.P.; Srinivasan, V.; Kizhakkemadam, V.K. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater. Sci. Eng. A 2009, 500, 114–121. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Gegel, H.L.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Gang, W.; Xin, L.; Ge, Y.; Zhengwei, G. Hot deformation characteristics and processing maps of AA7075-H18 alloy sheet under hot forming process conditions. Mater. Lett. 2022, 321, 132413. [Google Scholar] [CrossRef]
- Huizhong, L.; Haijun, W.; Zhou, L.; Ming, L.C.; Hongting, L. Flow behavior and processing map of as-cast Mg–10Gd–4.8 Y–2Zn–0.6 Zr alloy. Mater. Sci. Eng. A 2010, 528, 154–160. [Google Scholar] [CrossRef]
- Zhiying, C.; Philip, N. Hot Deformation Behavior and Processing Maps for a Large Marine Crankshaft S34MnV Steel. Steel Res. Int. 2018, 89, 1700321. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K. Processing maps: A status report. J. Mater. Eng. Perform. 2003, 12, 638–645. [Google Scholar] [CrossRef]
- Huizhong, L.; Haijun, W.; Xiaopeng, L.; Hongting, L.; Ying, L.; Xinming, Z. Hot deformation and processing map of 2519A aluminum alloy. Mater. Sci. Eng. A 2011, 528, 1548–1552. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Mo | V |
---|---|---|---|---|---|---|---|---|
0.52~0.59 | ≤0.40 | 0.70~1.00 | ≤0.015 | ≤0.015 | 0.70~1.00 | ≤0.20 | ≤0.10 | ≤0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Li, S.; Ding, J.; Liu, W.; Fu, Y.; Shen, X.; Wei, H.; Wang, H.; Yu, L.; Fang, Q. Characteristic Flow Behavior and Processing Map of a Novel Lean Si Spring Steel for Automotive Stabilizer Bars. Metals 2023, 13, 44. https://doi.org/10.3390/met13010044
Pan H, Li S, Ding J, Liu W, Fu Y, Shen X, Wei H, Wang H, Yu L, Fang Q. Characteristic Flow Behavior and Processing Map of a Novel Lean Si Spring Steel for Automotive Stabilizer Bars. Metals. 2023; 13(1):44. https://doi.org/10.3390/met13010044
Chicago/Turabian StylePan, Hongbo, Shiwei Li, Jing Ding, Weiming Liu, Yanan Fu, Xiaohui Shen, Hailian Wei, Huiting Wang, Liang Yu, and Qiang Fang. 2023. "Characteristic Flow Behavior and Processing Map of a Novel Lean Si Spring Steel for Automotive Stabilizer Bars" Metals 13, no. 1: 44. https://doi.org/10.3390/met13010044
APA StylePan, H., Li, S., Ding, J., Liu, W., Fu, Y., Shen, X., Wei, H., Wang, H., Yu, L., & Fang, Q. (2023). Characteristic Flow Behavior and Processing Map of a Novel Lean Si Spring Steel for Automotive Stabilizer Bars. Metals, 13(1), 44. https://doi.org/10.3390/met13010044