# Identification of Requirements for FE Modeling of an Adaptive Joining Technology Employing Friction-Spun Joint Connectors (FSJC)

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simulative Requirements and Boundary Conditions

#### 2.1. Spatial Discretization and Mesh Modeling Techniques

#### 2.2. Material Modeling

#### 2.3. Contact and Friction Modeling

#### 2.4. Thermal Boundary Conditions

- Density $\mathsf{\rho}$
- Young’s modulus E
- Poisson’s ratio ν
- Heat capacity c
_{p} - Thermal conductivity k
- Coefficient of thermal expansion α
- Convection coefficient/heat transfer coefficient h

## 3. Conclusions and Outlook for Future Investigations

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Rostek, T.; Wiens, E.; Homberg, W. Joining with Versatile Friction-Spun Joint Connectors. Procedia Manuf.
**2020**, 47, 395–399. [Google Scholar] [CrossRef] - Wiens, E.; Wischer, C.; Homberg, W. Development of a novel adaptive joining technology employing Friction-Spun Joint Connectors (FSJC). In Proceedings of theESAFORM 2021 24th International Conference on Material Forming, Liège, Belgique, 14–16 April 2021. [Google Scholar]
- Wischer, C.; Homberg, W. A contribution on versatile process chains: Joining with adaptive joining elements, formed by friction spinning. Prod. Eng. Res. Devel.
**2021**, 16, 379–388. [Google Scholar] [CrossRef] - Xu, S.; Deng, X.; Reynolds, A.P.; Seidel, T.U. Finite element simulation of material flow in friction stir welding. Sci. Technol. Weld. Join.
**2001**, 6, 191–193. [Google Scholar] [CrossRef] - Chen, C.M.; Kovacevic, R. Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int. J. Mach. Tools Manuf.
**2003**, 43, 1319–1326. [Google Scholar] [CrossRef] - Song, M.; Kovacevic, R. Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int. J. Mach. Tools Manuf.
**2003**, 43, 605–615. [Google Scholar] [CrossRef] - Buffa, G.; Hua, J.; Shivpuri, R.; Fratini, L. A continuum based fem model for friction stir welding—model development. Mater. Sci. Eng. A
**2006**, 419, 389–396. [Google Scholar] [CrossRef] - Patil, S.; Baratzadeh, F.; Lankarani, H. Preliminary Study on Modeling of the Deformation and Thermal Behavior of FSSW using SPH Approach. In Proceedings of the 11th European LS-DYNA Conference, Salzburg, Austria, 9–11 May 2017. [Google Scholar]
- Meyghani, B.; Awang, M.; Emamian, S.; Mohd Nor, M.K.B. Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young’s Modulus Values. In The Advances in Joining Technology; Awang, M., Ed.; Springer: Singapore, 2019; pp. 1–13. ISBN 978-981-10-9040-0. [Google Scholar]
- Meyghani, B.; Awang, M.B.; Momeni, M.; Rynkovskaya, M. Development of a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW). IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 495, 1. [Google Scholar] [CrossRef] - Meyghani, B.; Wu, C. Progress in Thermomechanical Analysis of Friction Stir Welding. Chin. J. Mech. Eng.
**2020**, 33, 12. [Google Scholar] [CrossRef][Green Version] - Behrens, B.-A.; Dröder, K.; Hürkamp, A.; Droß, M.; Wester, H.; Stockburger, E. Finite Element and Finite Volume Modelling of Friction Drilling HSLA Steel under Experimental Comparison. Materials
**2021**, 14, 5997. [Google Scholar] [CrossRef] [PubMed] - Miller, S.F.; Shih, A.J. Thermo-Mechanical Finite Element Modeling of the Friction Drilling Process. J. Manuf. Sci. Eng.
**2007**, 129, 531–538. [Google Scholar] [CrossRef] - Dehghan, S.; Ismail, M.I.S.; Ariffin, M.K.A.; Baharudin, B.T.H.T.; Sulaiman, S. Numerical simulation on friction drilling of aluminum alloy. Mater. Und Werkst.
**2017**, 48, 241–248. [Google Scholar] [CrossRef] - Kumar, R.; Hynes, N.R.J. Finite-element simulation and validation of material flow in thermal drilling process. J. Braz. Soc. Mech. Sci. Eng.
**2018**, 40, 162. [Google Scholar] [CrossRef] - Journaux, A.; Legaud, T.; Lapoujade, V. Multiphysics SPH simulation of flow drilling process. In Proceedings of the 13th European LS-DYNA Conference, Ulm, Germany, 5–7 October 2021. [Google Scholar]
- Miller, S.F.; Li, R.; Wang, H.; Shih, A.J. Experimental and Numerical Analysis of the Friction Drilling Process. J. Manuf. Sci. Eng.
**2006**, 128, 802–810. [Google Scholar] [CrossRef] - Vijayabaskar, P.; Hynes, N.R.J. Simulation of friction stir drilling process. In Proceedings of the 2nd International Conference on Condensed Matter and Applied Physics (ICC 2017), Bikaner, India, 24–25 November 2017. [Google Scholar]
- Livermore Software Technology. LS-DYNA
^{®}Keyword User’s Manual Volume I: LS-DYNA R13; Livermore Software Technology: Livermore, CA, USA, 2021. [Google Scholar] - Livermore Software Technology. LS-DYNA
^{®}Keyword User’s Manual Volume II Material Models: LS-DYNA R13; Livermore Software Technology: Livermore, CA, USA, 2021. [Google Scholar]

**Figure 1.**Process principle of the adaptive joining technology employing FSJC with pre-holed workpieces.

**Figure 2.**Schematic simplified representation of (

**a**) friction stir welding (FSW) and (

**b**) friction drilling (FS).

**Figure 3.**Initial FE modeling of the adaptive joining technology using reduced process step models for (

**a**) the forming of the adaptive joining element, and (

**b**) the joining process.

**Figure 4.**Overview of the boundary conditions and modeling approaches for simulating the adaptive joining process, divided into the process steps of shaping the adaptive joining element and the joining process with pre-holed workpieces.

**Figure 5.**Detailed view of the FE model for the forming of the adaptive joining element to illustrate the initial punctual contact.

**Figure 6.**Comparison of contact energies, y-contact forces, and y-contact moments between the standard and segment-based contact penalty formulation for forming the adaptive joining element.

**Figure 7.**Comparison of contact energies between the coarse and fine meshing of the rod using the segment-based contact penalty formulation to form the adaptive joining element.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oesterwinter, A.; Wischer, C.; Homberg, W.
Identification of Requirements for FE Modeling of an Adaptive Joining Technology Employing Friction-Spun Joint Connectors (FSJC). *Metals* **2022**, *12*, 869.
https://doi.org/10.3390/met12050869

**AMA Style**

Oesterwinter A, Wischer C, Homberg W.
Identification of Requirements for FE Modeling of an Adaptive Joining Technology Employing Friction-Spun Joint Connectors (FSJC). *Metals*. 2022; 12(5):869.
https://doi.org/10.3390/met12050869

**Chicago/Turabian Style**

Oesterwinter, Annika, Christian Wischer, and Werner Homberg.
2022. "Identification of Requirements for FE Modeling of an Adaptive Joining Technology Employing Friction-Spun Joint Connectors (FSJC)" *Metals* 12, no. 5: 869.
https://doi.org/10.3390/met12050869