Effects of Point Defects on the Stable Occupation, Diffusion and Nucleation of Xe and Kr in UO_{2}
Abstract
:1. Introduction
2. Simulation Method
2.1. Interatomic Potential
2.2. MD Simulation Setup
2.2.1. Stable Occupation of Xe/Kr Cluster in UO_{2}-Containing Point Defects
2.2.2. Diffusion of Xe/Kr Cluster in UO_{2}
2.2.3. Nucleation of Xe/Kr Cluster in UO_{2}-Containing Point Defects
3. Results and Discussion
3.1. Stable Occupation of Xe/Kr Cluster in UO_{2}-Containing Point Defects
3.2. Diffusion of Xe/Kr Cluster in UO_{2}
3.3. Nucleation of Xe/Kr Cluster in UO_{2}-Containing Point Defects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matthews, J.R. Technological problems and the future of research on the basic properties of actinide oxides. J. Chem. Soc. Faraday Trans. 2 1987, 83, 1273–1285. [Google Scholar] [CrossRef]
- Matzke, H. Diffusion processes in nuclear fuels. In Diffusion Processes in Nuclear Materials; Agarwala, P., Ed.; Elsevier (North Holland Publishing): Amsterdam, The Netherlands, 1992. [Google Scholar]
- Rest, J.; Hofman, G. An alternative explanation for evidence that xenon depletion, pore formation, and grain subdivision begin at different local burnups. J. Nucl. Mater. 2000, 277, 231–238. [Google Scholar] [CrossRef]
- Matzke, H.J. Gas release mechanisms in UO_{2}—a critical review. Radiat. Eff. 1980, 53, 219–242. [Google Scholar] [CrossRef]
- White, R.; Tucker, M. A new fission-gas release model. J. Nucl. Mater. 1983, 118, 1–38. [Google Scholar] [CrossRef]
- White, R. The development of grain-face porosity in irradiated oxide fuel. J. Nucl. Mater. 2004, 325, 61–77. [Google Scholar] [CrossRef]
- Turnbull, J.; Friskney, C.; Findlay, J.; Johnson, F.; Walter, A. The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide. J. Nucl. Mater. 1982, 107, 168–184. [Google Scholar] [CrossRef]
- He, L.; Pakarinen, J.; Kirk, M.; Gan, J.; Nelson, A.; Bai, X.; El-Azab, A.; Allen, T. Microstructure evolution in Xe-irradiated UO_{2} at room temperature. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 330, 55–60. [Google Scholar] [CrossRef]
- Millett, P.C.; Tonks, M. Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. J. Nucl. Mater. 2011, 412, 281–286. [Google Scholar] [CrossRef]
- Chockalingam, K.; Millett, P.C.; Tonks, M. Effects of intergranular gas bubbles on thermal conductivity. J. Nucl. Mater. 2012, 430, 166–170. [Google Scholar] [CrossRef]
- Lucuta, P.; Matzke, H.; Hastings, I. A pragmatic approach to modelling thermal conductivity of irradiated UO_{2} fuel: Review and recommendations. J. Nucl. Mater. 1996, 232, 166–180. [Google Scholar] [CrossRef]
- Hoh, A.; Matzke, H. Fission-enhanced self-diffusion of uranium in UO_{2} and UC. J. Nucl. Mater. 1973, 48, 157–164. [Google Scholar] [CrossRef]
- Jackson, R.; Catlow, C. Trapping and solution of fission Xe in UO_{2}.: Part 1. Single gas atoms and solution from underpressurized bubbles. J. Nucl. Mater. 1985, 127, 161–166. [Google Scholar] [CrossRef]
- Djourelov, N.; Marchand, B.; Marinov, H.; Moncoffre, N.; Pipon, Y.; Nédélec, P.; Toulhoat, N.; Sillou, D. Variable energy positron beam study of Xe-implanted uranium oxide. J. Nucl. Mater. 2013, 432, 287–293. [Google Scholar] [CrossRef]
- Moore, E.; Corrales, L.R.; Desai, T.; Devanathan, R. Molecular dynamics simulation of Xe bubble nucleation in nanocrystalline UO_{2} nuclear fuel. J. Nucl. Mater. 2011, 419, 140–144. [Google Scholar] [CrossRef]
- Zhang, W.; Yun, D.; Liu, W. Xenon Diffusion Mechanism and Xenon Bubble Nucleation and Growth Behaviors in Molybdenum via Molecular Dynamics Simulations. Materials 2019, 12, 2354. [Google Scholar] [CrossRef] [Green Version]
- Govers, K.; Verwerft, M. Classical molecular dynamics investigation of microstructure evolution and grain boundary diffusion in nano-polycrystalline UO_{2}. J. Nucl. Mater. 2013, 438, 134–143. [Google Scholar] [CrossRef]
- Vincent-Aublant, E.; Delaye, J.-M.; Van Brutzel, L. Self-diffusion near symmetrical tilt grain boundaries in UO_{2} matrix: A molecular dynamics simulation study. J. Nucl. Mater. 2009, 392, 114–120. [Google Scholar] [CrossRef]
- Murphy, S.T.; Jay, E.E.; Grimes, R.W. Pipe diffusion at dislocations in UO_{2}. J. Nucl. Mater. 2014, 447, 143–149. [Google Scholar] [CrossRef]
- Yun, Y.; Kim, H.; Kim, H.; Park, K. Atomic diffusion mechanism of Xe in UO_{2}. J. Nucl. Mater. 2008, 378, 40–44. [Google Scholar] [CrossRef]
- Lawrence, G. A review of the diffusion coefficient of fission-product rare gases in uranium dioxide. J. Nucl. Mater. 1978, 71, 195–218. [Google Scholar] [CrossRef]
- Andersson, D.; Garcia, P.; Liu, X.-Y.; Pastore, G.; Tonks, M.; Millett, P.; Dorado, B.; Gaston, D.; Andrs, D.; Williamson, R.; et al. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO_{2}±x: Implications for nuclear fuel performance modeling. J. Nucl. Mater. 2014, 451, 225–242. [Google Scholar] [CrossRef]
- Matzke, H. Atomic transport properties in UO_{2} and mixed oxides (U, Pu)O2. J. Chem. Soc. Faraday Trans. 2 1987, 83, 1121–1142. [Google Scholar] [CrossRef]
- Sabioni, A.; Ferraz, W.; Millot, F. First study of uranium self-diffusion in UO_{2} by SIMS. J. Nucl. Mater. 1998, 257, 180–184. [Google Scholar] [CrossRef]
- Forsberg, K.; Massih, A. Diffusion theory of fission gas migration in irradiated nuclear fuel UO_{2}. J. Nucl. Mater. 1985, 135, 140–148. [Google Scholar] [CrossRef]
- Forsberg, K.; Massih, A. Fission gas release under time-varying conditions. J. Nucl. Mater. 1985, 127, 141–145. [Google Scholar] [CrossRef]
- Lanning, D.D.; Beyer, C.E.; Painter, C.L. FRAPCON-3: Modifications to Fuel Rod Material Properties and Performance Models for High-Burnup Application; Technical Report No. NUREG/CR-6534-Vol. 1; Division of Systems Technology, Office of Nuclear Regulatory Commission, U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1997. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.; Long, G. The Emission of Xenon-133 from Lightly Irradiated Uranium Dioxide Spheroids and Powders; Technical Report No. AERE-R-4347; Atomic Energy Research Establishment, United Kingdom Atomic Energy Authority: Harwell, England, 1963. [Google Scholar]
- Williams, N.R.; Molinari, M.; Parker, S.C.; Storr, M. Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO_{2}. J. Nucl. Mater. 2014, 458, 45–55. [Google Scholar] [CrossRef]
- Bertolus, M.; Freyss, M.; Dorado, B.; Martin, G.; Hoang, K.; Maillard, S.; Skorek, R.; Garcia, P.; Valot, C.; Chartier, A.; et al. Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. J. Nucl. Mater. 2015, 462, 475–495. [Google Scholar] [CrossRef] [Green Version]
- Boyarchenkov, A.; Potashnikov, S.; Nekrasov, K.; Kupryazhkin, A. Investigation of cation self-diffusion mechanisms in UO_{2}±x using molecular dynamics. J. Nucl. Mater. 2013, 442, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Childs, B. Fission product effects in uranium dioxide. J. Nucl. Mater. 1963, 9, 217–244. [Google Scholar] [CrossRef]
- Olander, D.; Wongsawaeng, D. Re-solution of fission gas—A review: Part I. Intragranular bubbles. J. Nucl. Mater. 2006, 354, 94–109. [Google Scholar] [CrossRef]
- Nelson, R. The stability of gas bubbles in an irradiation environment. J. Nucl. Mater. 1969, 31, 153–161. [Google Scholar] [CrossRef]
- Evans, J.H. Effect of temperature on bubble precipitation in uranium dioxide implanted with krypton and xenon ions. J. Nucl. Mater. 1992, 188, 222–225. [Google Scholar] [CrossRef]
- Michel, A.; Sabathier, C.; Carlot, G.; Kaïtasov, O.; Bouffard, S.; Garcia, P.; Valot, C. An in situ TEM study of the evolution of Xe bubble populations in UO_{2}. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 272, 218–221. [Google Scholar] [CrossRef]
- Basak, C.; Sengupta, A.; Kamath, H. Classical molecular dynamics simulation of UO_{2} to predict thermophysical properties. J. Alloy. Compd. 2003, 360, 210–216. [Google Scholar] [CrossRef]
- Morelon, N.-D.; Ghaleb, D.; Delaye, J.-M.; Van Brutzel, L. A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide. Philos. Mag. 2003, 83, 1533–1555. [Google Scholar] [CrossRef]
- Cooper, M.W.D.; Rushton, M.; Grimes, R.W. A many-body potential approach to modelling the thermomechanical properties of actinide oxides. J. Phys. Condens. Matter 2014, 26, 105401. [Google Scholar] [CrossRef]
- Geng, H.; Chen, Y.; Kaneta, Y.; Kinoshita, M. Molecular dynamics study on planar clustering of xenon in UO_{2}. J. Alloy. Compd. 2008, 457, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Chartier, A.; Van Brutzel, L.; Freyss, M. Atomistic study of stability of xenon nanoclusters in uranium oxide. Phys. Rev. B 2010, 81, 174111. [Google Scholar] [CrossRef]
- Thompson, A.E.; Meredig, B.; Stan, M.; Wolverton, C. Interatomic potential for accurate phonons and defects in UO_{2}. J. Nucl. Mater. 2014, 446, 155–162. [Google Scholar] [CrossRef]
- Cooper, M.W.D.; Kuganathan, N.; Burr, P.A.; Rushton, M.J.D.; Grimes, R.W.; Stanek, C.R.; Andersson, D.A. Development of Xe and Kr empirical potentials for CeO_{2}, ThO_{2}, UO_{2} and PuO_{2}, combining DFT with high temperature MD. J. Phys. Condens. Matter 2016, 28, 405401. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.T.; Toennies, J.P. The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 2003, 118, 4976–4983. [Google Scholar] [CrossRef]
- Padel, A.; De Novion, C. Constantes elastiques des carbures, nitrures et oxydes d’uranium et de plutonium. J. Nucl. Mater. 1969, 33, 40–51. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Nordlund, K.; Averback, R.S. Point defect movement and annealing in collision cascades. Phys. Rev. B 1997, 56, 2421–2431. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.G.J.; Grimes, R.W. Diffusion of Xe in UO_{2}. J. Chem. Soc. Faraday Trans. 1990, 86, 1257–1261. [Google Scholar] [CrossRef]
- Catlow, C.R.A. Fission gas diffusion in uranium dioxide. Proc. R. Soc. Lond. A. Math. Phys. Eng. Sci. 1978, 364, 473–497. [Google Scholar] [CrossRef]
- Miekeley, W.; Felix, F. Effect of stoichiometry on diffusion of xenon in UO_{2}. J. Nucl. Mater. 1972, 42, 297–306. [Google Scholar] [CrossRef]
- Cornell, R.M. The growth of fission gas bubbles in irradiated uranium dioxide. Philos. Mag. 1969, 19, 539–554. [Google Scholar] [CrossRef]
- Kaimal, K.; Naik, M.; Paul, A. Temperature dependence of diffusivity of xenon in high dose irradiated UO_{2}. J. Nucl. Mater. 1989, 168, 188–190. [Google Scholar] [CrossRef]
- Torres, E.; Kaloni, T. Thermal conductivity and diffusion mechanisms of noble gases in uranium dioxide: A DFT+U study. J. Nucl. Mater. 2019, 521, 137–145. [Google Scholar] [CrossRef]
- Turnbull, J. The distribution of intragranular fission gas bubbles in UO_{2} during irradiation. J. Nucl. Mater. 1971, 38, 203–212. [Google Scholar] [CrossRef]
Number of Xe | Diffusion Energy Barrier (eV) | Diffusion Prefactor (m^{2}/s) |
---|---|---|
Xe_{1} | 2.11 | 1.8 × 10^{−5} |
Xe_{2} | 2.15 | 0.35 × 10^{−5} |
Xe_{3} | 2.07 | 0.25 × 10^{−5} |
Number of Kr | Diffusion energy Barrier (eV) | Diffusion Prefactor (m^{2}/s) |
---|---|---|
Kr_{1} | 2.31 | 0.12 × 10^{−3} |
Kr_{2} | 1.89 | 0.20 × 10^{−5} |
Kr_{3} | 1.95 | 0.12 × 10^{−5} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, Z.; Xia, Y.; Chen, Y.; Liu, Z.; Wang, Q.; Wu, L.; Hu, W.; Deng, H. Effects of Point Defects on the Stable Occupation, Diffusion and Nucleation of Xe and Kr in UO_{2}. Metals 2022, 12, 789. https://doi.org/10.3390/met12050789
Wang L, Wang Z, Xia Y, Chen Y, Liu Z, Wang Q, Wu L, Hu W, Deng H. Effects of Point Defects on the Stable Occupation, Diffusion and Nucleation of Xe and Kr in UO_{2}. Metals. 2022; 12(5):789. https://doi.org/10.3390/met12050789
Chicago/Turabian StyleWang, Li, Zhen Wang, Yaping Xia, Yangchun Chen, Zhixiao Liu, Qingqing Wang, Lu Wu, Wangyu Hu, and Huiqiu Deng. 2022. "Effects of Point Defects on the Stable Occupation, Diffusion and Nucleation of Xe and Kr in UO_{2}" Metals 12, no. 5: 789. https://doi.org/10.3390/met12050789