Research on Normal Contact Stiffness of Rough Joint Surfaces Machined by Turning and Grinding
Abstract
:1. Introduction
2. Surface Modeling Method under the Combined Machining Mode
2.1. Turning Mode
2.2. Grinding Mode
2.3. Combined Machining Mode
3. Finite Element Contact Simulation
3.1. Construction of 3D Solid Model
3.2. Finite Element Analysis
4. Comparison and Analysis of Results
4.1. Comparison Results under Different Methods
4.2. Comparison Results under Different Machining Parameters
4.2.1. Turning Tool Arc Radius
4.2.2. Turning Feed Rate
4.2.3. Grinding Depth
4.2.4. Fractal Dimension
4.2.5. Scale Coefficient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, H.; Long, X.H.; Meng, G.; Liu, X.B. A stiffness model for bolted joints considering asperity interactions of rough surface contact. J. Tribol. Trans. Asme 2022, 144, 011501. [Google Scholar] [CrossRef]
- Liu, Y.; Suo, S.; Meng, G.; Li, D. Study on the resonance restraint of a large hoist system headframe. Int. J. Struct. Stab. Dyn. 2020, 20, 2050109. [Google Scholar] [CrossRef]
- Zhang, K.; Li, G.; Gong, J.Z.; Zhang, M. Normal contact stiffness of rough surfaces considering oblique asperity contact. Adv. Mech. Eng. 2019, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sun, Y.Y.; Zhao, D.; Wu, S.J. A revised contact stiffness model of rough curved surfaces based on the length scale. Tribol. Int. 2021, 164, 107206. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.J.; Shi, X.H.; Ma, S.L.; Cai, A.J. Contact stiffness model of joint surface considering continuous smooth characteristics and asperity interaction. TriL 2021, 69, 43. [Google Scholar] [CrossRef]
- Ghaednia, H.; Wang, X.; Saha, S.; Xu, Y.; Sharma, A.; Jackson, R. A review of elastic-plastic contact mechanics. ApMRv 2018, 69, 060804. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 1966, 295, 300–319. [Google Scholar] [CrossRef]
- Bush, A.W.; Gibson, R.D.; Thomas, T.R. The elastic contact of a rough surface. Wear 1975, 35, 87–111. [Google Scholar] [CrossRef]
- Komvopoulos, K.; Choi, D.H. Elastic finite element analysis of multi-asperity contacts. J. Tribol. 1992, 114, 823–831. [Google Scholar] [CrossRef]
- Horng, J.H. An elliptic elastic-plastic asperity microcontact model for rough surfaces. J. Tribol. 1998, 120, 82–88. [Google Scholar] [CrossRef]
- An, Q.; Suo, S.F.; Lin, F.Y.; Shi, J.W. A novel micro-contact stiffness model for the grinding surfaces of steel materials based on cosine curve-shaped asperities. Materials 2019, 12, 3561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.R.; Etsion, I.; Bogy, D.B. An elastic-plastic model for the contact of rough surfaces. J. Tribol. 1987, 109, 257–263. [Google Scholar] [CrossRef]
- Zhao, Y.; Maietta, D.M.; Chang, L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 2000, 122, 86–93. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, L. A model of asperity interactions in elastic-plastic contact of rough surfaces. J. Tribol. 2001, 123, 857–864. [Google Scholar] [CrossRef]
- Ciavarella, M.; Greenwood, J.A.; Paggi, M. Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 2008, 265, 729–734. [Google Scholar] [CrossRef]
- Kogut, L.; Etsion, I. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 2003, 46, 383–390. [Google Scholar] [CrossRef]
- Chandrasekar, S.; Eriten, M.; Polycarpou, A.A. An improved model of asperity interaction in normal contact of rough surfaces. J. Appl. Mech. 2013, 80, 011025. [Google Scholar] [CrossRef]
- Ciavarella, M. Rough contacts near full contact with a very simple asperity model. Tribol. Int. 2016, 93, 464–469. [Google Scholar] [CrossRef]
- Gao, Z.; Fu, W.; Wen, W.; Kang, W.; Liu, Y. The study of anisotropic rough surfaces contact considering lateral contact and interaction between asperities. Tribol. Int. 2018, 126, 270–282. [Google Scholar] [CrossRef]
- Du, F.; Hong, J.; Xu, Y. An acoustic model for stiffness measurement of tribological interface using ultrasound. Tribol. Int. 2014, 73, 70–77. [Google Scholar] [CrossRef]
- Mulvihill, D.M.; Brunskill, H.; Kartal, M.E.; Dwyer-Joyce, R.S.; Nowell, D. A comparison of contact stiffness measurements obtained by the digital Image correlation and ultrasound techniques. ExM 2013, 53, 1245–1263. [Google Scholar] [CrossRef] [Green Version]
- Yazman, Ş.; Gemı, L.; Uludağ, M.; Akdemır, A.; Uyaner, M.; Dişpinar, D. Correlation Between Machinability and Chip Morphology of Austempered Ductile Iron. J. Test. Eval. 2018, 46, 20160490. [Google Scholar] [CrossRef]
- Yazman, Ş.; Köklü, U.; Urtekin, L.; Morkavuk, S.; Gemi, L. Experimental study on the effects of cold chamber die casting parameters on high-speed drilling machinability of casted AZ91 alloy. J. Manuf. Processes 2020, 57, 136–152. [Google Scholar] [CrossRef]
- Yazman, Ş. The effects of back-up on drilling machinability of filament wound GFRP composite pipes: Mechanical characterization and drilling tests. J. Manuf. Processes 2021, 68, 1535–1552. [Google Scholar] [CrossRef]
- Uludağ, M.; Yazman, Ş.; Gemi, L.; Bakircioğlu, B.; Erzi, E.; Dispinar, D. Relationship Between Machinability, Microstructure, and Mechanical Properties of Al-7Si Alloy. J. Test. Eval. 2018, 46. [Google Scholar] [CrossRef]
- Aamir, M.; Davis, A.; Keeble, W.; Koklu, U.; Giasin, K.; Vafadar, A.; Tolouei-Rad, M. The Effect of TiN-, TiCN-, TiAlN-, and TiSiN Coated Tools on the Surface Defects and Geometric Tolerances of Holes in Multi-Spindle Drilling of Al2024 Alloy. Metals 2021, 11, 1103. [Google Scholar] [CrossRef]
- Lee, W.B.; Cheung, C.F. A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int. J. Mech. Sci. 2001, 43, 961–991. [Google Scholar] [CrossRef]
- Qi, A.; Suo, S.; Yan, L.; Li, Y.; Shi, J. Feature decoupling and shape simulation of turning rough surface. J. Mech. Eng. 2019, 55, 200–209. [Google Scholar] [CrossRef]
- Chen, B.; Luo, L.; Jiao, H.; Li, S.; Deng, Z.; Yao, H. Affecting factors, optimization, and suppression of grinding marks: A review. Int. J. Adv. Manuf. Technol. 2021, 115, 1–29. [Google Scholar] [CrossRef]
- Chen, C.; Tang, J.; Chen, H.; Zhu, C. Research about modeling of grinding workpiece surface topography based on real topography of grinding wheel. Int. J. Adv. Manuf. Technol. 2017, 93, 2411–2421. [Google Scholar] [CrossRef]
- Yan, W.; Komvopoulos, K. Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 1998, 84, 3617–3624. [Google Scholar] [CrossRef]
- Yu, Z.Q.; Wang, T.Y.; Wang, P.; Tian, Y.; Li, H.B. Rapid and precise reverse engineering of complex geometry through multi-sensor data fusion. IEEE Access 2019, 7, 165793–165813. [Google Scholar] [CrossRef]
- Huang, W.H.; Jiang, Z.G.; Wang, T.; Wang, Y.; Hu, X.L. Remanufacturing scheme design for used parts based on incomplete information reconstruction. Chin. J. Mech. Eng. 2020, 33, 1–14. [Google Scholar] [CrossRef]
- Shi, W.B.; Zhang, Z.S. Contact characteristic parameters modeling for the assembled structure with bolted joints. Tribol. Int. 2022, 165, 107272. [Google Scholar] [CrossRef]
Stress (MPa) | 418 | 500 | 605 | 695 | 780 | 829 | 882 | 908 | 921 | 932 | 955 |
Plastic strain (%) | 0 | 1.6 | 3.0 | 5.6 | 9.5 | 15.8 | 25.1 | 35.6 | 45.5 | 55.9 | 65.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; An, Q.; Shang, D.; Bai, L.; Huang, M.; Huang, S. Research on Normal Contact Stiffness of Rough Joint Surfaces Machined by Turning and Grinding. Metals 2022, 12, 669. https://doi.org/10.3390/met12040669
Liu Y, An Q, Shang D, Bai L, Huang M, Huang S. Research on Normal Contact Stiffness of Rough Joint Surfaces Machined by Turning and Grinding. Metals. 2022; 12(4):669. https://doi.org/10.3390/met12040669
Chicago/Turabian StyleLiu, Yue, Qi An, Deyong Shang, Long Bai, Min Huang, and Shouqing Huang. 2022. "Research on Normal Contact Stiffness of Rough Joint Surfaces Machined by Turning and Grinding" Metals 12, no. 4: 669. https://doi.org/10.3390/met12040669
APA StyleLiu, Y., An, Q., Shang, D., Bai, L., Huang, M., & Huang, S. (2022). Research on Normal Contact Stiffness of Rough Joint Surfaces Machined by Turning and Grinding. Metals, 12(4), 669. https://doi.org/10.3390/met12040669