Metallic Nanomaterials with Biomedical Applications
Abstract
:1. Introduction
2. Contributions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Monaco, A.M.; Michele, G. Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J. Nanotechnol. 2014, 5, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Ke, X. Recent progress in imaging technology combined with nanomaterials for medical applications. Micro Nano Lett. 2019, 14, 1263–1267. [Google Scholar] [CrossRef]
- Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X.J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 2012, 4, 6135–6149. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700831. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
- Chen, J.; Ning, C.; Zhou, Z.; Yu, P.; Zhu, Y.; Tan, G.; Mao, C. Nanomaterials as photothermal therapeutic agents. Prog. Mater Sci. 2019, 99, 1–26. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta Open 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Wang, J.; Mu, X.; Sun, M. The thermal, electrical and thermoelectric properties of graphene nanomaterials. J. Nanomater. 2019, 9, 218. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef]
- Frechette, M.F.; Trudeau, M.L.; Alamdar, H.D.; Boily, S. Introductory remarks on nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 808–818. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.F.; Bao, X.Y.; Han, T.Z.; Tang, Z.; Zhang, L.X.; Zhu, W.; Wang, E.G.; Niu, Q.; Qiu, Z.Q.; et al. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917. [Google Scholar] [CrossRef]
- Lan, Y.; Huang, C. Tunable melting temperature of Sn encased by Cu nanoparticles for high temperature energy storage. J. Energy Storage 2022, 54, 105203. [Google Scholar] [CrossRef]
- Chellvarajoo, S.; Abdullah, M.Z.; Khor, C.Y. Effects of diamond nanoparticles reinforcement into lead-free Sn–3.0 Ag–0.5 Cu solder pastes on microstructure and mechanical properties after reflow soldering process. Mater. Des. 2015, 82, 206–215. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
- Cho, I.H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.M.; Brus, L.; Chidsey, C.E.; Creager, S.; Creutz, C.; Kagan, C.R.; Kamat, P.V.; Lieberman, M.; Lindsay, S.; Marcus, R.A.; et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 2003, 107, 6668–6697. [Google Scholar] [CrossRef]
- Wu, S.; Weng, Z.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Functionalized TiO2 based nanomaterials for biomedical applications. Adv. Funct. Mater. 2014, 24, 5464–5481. [Google Scholar] [CrossRef]
- Jiang, X.M.; Wang, L.M.; Wang, J.; Chen, C.Y. Gold nanomaterials: Preparation, chemical modification, biomedical applications and potential risk assessment. Appl. Biochem. Biotechnol. 2012, 16, 1533–1551. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Kaushik, N.; Linh, N.N.; Ghimire, B.; Pengkit, A.; Sornsakdanuphap, J.; Lee, S.; Choi, E.H. Plasma and nanomaterials: Fabrication and biomedical applications. J. Nanomater. 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindhan, M.; Liu, Z.; Chen, A. Design and electrochemical study of platinum-based nanomaterials for sensitive detection of nitric oxide in biomedical applications. J. Nanomater. 2016, 6, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purniawan, A.; French, P.J.; Pandraud, G.; Sarro, P.M. TiO2 ALD nanolayer as evanescent waveguide for biomedical sensor applications. Procedia Eng. 2010, 5, 1131–1135. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, Z.; Zhang, Z.; Niu, W.; Li, C.; Yang, N.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, Y.; Medforth, C.J.; Pereira, E.; Singh, A.K.; Xu, H.; Jiang, Y.J.; Brinker, C.J.; Swol, F.V.; Shelnutt, J.A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645. [Google Scholar] [CrossRef]
- Meng, L.; Gan, N.; Li, T.; Cao, Y.; Hu, F.; Zheng, L.; Int, J. A three-dimensional, magnetic and electroactive nanoprobe for amperometric determination of tumor biomarkers. Mol. Sci. 2011, 12, 362–375. [Google Scholar] [CrossRef]
- Szymańska, I.; Radecka, H.; Radecki, J.; Kikut-Ligaj, D. Fullerene modified supported lipid membrane as sensitive element of sensor for odorants. Biosens. Bioelectron. 2001, 16, 911–915. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Y.; Jiang, L.P.; Zhu, J.J. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens. Bioelectron. 2011, 26, 1890–1894. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Ma, H. Electrochemical DNA biosensor based on silver nanoparticles/poly (3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. Anal. Biochem. 2009, 387, 13–19. [Google Scholar] [CrossRef]
- Esteban, M.; Arino, C.; Díaz-Cruz, J.M. Chemometrics for the analysis of voltammetric data. TrAC Trends Anal. Chem. 2006, 25, 86–92. [Google Scholar] [CrossRef]
- Sengupta, J.; Ghosh, S.; Datta, P.; Gomes, A.; Gomes, A. Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol. 2014, 14, 990–1006. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhao, G.; Feng, L.; Chen, S. Metallic Nanomaterials with Biomedical Applications. Metals 2022, 12, 2133. https://doi.org/10.3390/met12122133
Wang J, Zhao G, Feng L, Chen S. Metallic Nanomaterials with Biomedical Applications. Metals. 2022; 12(12):2133. https://doi.org/10.3390/met12122133
Chicago/Turabian StyleWang, Jiali, Guo Zhao, Liya Feng, and Shaowen Chen. 2022. "Metallic Nanomaterials with Biomedical Applications" Metals 12, no. 12: 2133. https://doi.org/10.3390/met12122133
APA StyleWang, J., Zhao, G., Feng, L., & Chen, S. (2022). Metallic Nanomaterials with Biomedical Applications. Metals, 12(12), 2133. https://doi.org/10.3390/met12122133