Technology for Complex Processing of Electric Smelting Dusts of Ilmenite Concentrates to Produce Titanium Dioxide and Amorphous Silica
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study of Silica Separation from Electric Smelting Dust of Ilmenite Concentrates
3.1.1. Influence of the Temperature of the Fluorination Process
3.1.2. Effect of the Fluoridation Duration
3.1.3. Influence of Mass Ratio of Dust from Electric Smelting of Ilmenite Concentrate to Ammonium Bifluoride
3.2. Silicon Dioxide Production
3.3. Titanium Fluoride Sublimation and Study of the Behavior of Impurity Components during Fluorination
3.4. Titanium Dioxide Production and Purification
3.5. Process Flow of Complex Processing of Electric Smelting Dust of Ilmenite Concentrates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols and Abbreviations
IMOB JSC | Institute of Metallurgy and Ore Beneficiation Joint Stock Company |
UK TMC JSC | “Ust-Kamenogorsk Titanium-Magnesium Combine” Joint Stock Company. |
XRD | X-ray diffraction analysis |
S:L | ratio of solid phase weight (in grams) to liquid phase volume (in ml) |
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ngo, T.Q.; Posadas, A.; Seo, H.; Hoang, S.; McDaniel, M.D.; Utess, D.; Triyoso, D.H.; Mullins, C.B.; Demkov, A.A.; Ekerdt, J.G. Atomic layer deposition of photoactive CoO/SrTiO3 and CoO/TiO2 on Si(001) for visible light driven photoelectrochemical water oxidation. J. Appl. Phys. 2013, 114, 084901. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303–304. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977, 81, 1484–1488. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, S.; Wu, M.; Wu, H.; Zhang, J.; Li, W.; Cao, C. Photoelectrocatalytic Degradation of Sulfosalicylic Acid and Its Electrochemical Impedance Spectroscopy Investigation. J. Phys. Chem. A 2000, 104, 7016–7020. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yu, H.; Ao, C.H.; Lee, S.C.; Yu, J.C.; Ho, W. Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Film. 2006, 496, 273–280. [Google Scholar] [CrossRef]
- Janus, M.; Choina, J.; Morawski, A.W. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity. J. Hazard. Mater. 2009, 166, 1–5. [Google Scholar] [CrossRef]
- Korina, E.; Stoilova, O.; Manolova, N.; Rashkov, I. Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 2018, 6, 2075–2084. [Google Scholar] [CrossRef]
- Sraw, A.; Kaur, T.; Pandey, Y.; Sobti, A.; Wanchoo, R.K.; Toor, A.P. Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. J. Environ. Chem. Eng. 2018, 6, 7035–7043. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: Recent advances and novel applications. J. Hazard. Mater. 2018, 341, 404–423. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Pan, J.; Leygraf, C.; Thierry, D.; Ektessabi, A.M. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J. Biomed. Mater. Res. 1997, 35, 309–318. [Google Scholar] [CrossRef]
- Heidenau, F.; Mittelmeier, W.; Detsch, R.; Haenle, M.; Stenzel, F.; Ziegler, G.; Gollwitzer, H. A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med. 2005, 16, 883–888. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Weintraub, G. Process of Obtaining Titanic Oxid. U.S. Patent 1014793A; IPC C22B34/125 (EP, US); Y10S423/02 (EP), 16 January 1912. [Google Scholar]
- Joseph, B. Titanium Compound. U.S. Patent 1504669A; IPC C22B34/12, 12 August 1924. [Google Scholar]
- Weizmann, C.; Blumenfeld, J. Improvements Relating to the Treatment of Solutions for the Separation of Suspended Matter. UK Patent 228814A; IPC C01F15/00 (EP); C01G19/00 (EP); C01G23/001 (EP), 3 February 1925. [Google Scholar]
- Mecklenburg, W. Production of Titanium Dioxide. U.S. Patent 1758528A; IPC C01G23/053 (EP), 13 May 1930. [Google Scholar]
- Belenky, E.F.; Riskin, I.V. Chemistry and Technology of Pigments; Goskhimizdat: Leningrad, Russia, 1960; p. 756. [Google Scholar]
- Jelks, B. Titanium: Its Occurrence, Chemistry and Technology, 2nd ed.; Ronald Press: New York, NY, USA, 1966; p. 691. [Google Scholar]
- Rakov, E.G. Ammonium Fluorides; Results of Science and Technology; Inorganic Chemistry; All-Union Institute of Scientific and Technical Information: Moscow, Russia, 1988; Volume 15, p. 154. [Google Scholar]
- Dmitriev, A.N.; Smorokov, A.A.; Kantaev, A.С.; Nikitin, D.S.; Vit’kina, G.Y. Fluorammonium-processing method of titanium slag. Izvestiya vysshee uchebnykh obrazovatel’nykh uchebov [Proceedings of Higher Educational Institutions]. Ferr. Metall. 2021, 64, 178–183. [Google Scholar]
- Fedun, M.P.; Bakanov, V.K.; Pastikhin, V.V. Method of Processing of Titanium-Silicon-Containing Concentrates. R.F. Patent 2264478, 20 November 2005. [Google Scholar]
- Andreev, A.A.; D’jachenko, A.N. Method of Processing of Raw Materials Containing Titanium. R.F. Patent 2365647, 27 August 2009. [Google Scholar]
- Andreev, A.A.; D’jachenko, A.N. Method to Process Titanium-Silicon-Containing Stock. Patent RF 2377332, 27 August 2009. [Google Scholar]
- Gordienko, P.S.; Pashnina, E.V.; Shabalin, I.A.; Dostovalov, D.V. Method of Processing Titanium-Containing Mineral Raw Materials. Patent RF 2717418, 23 March 2020. [Google Scholar]
- Ultarakova, A.A.; Yessengaziyev, A.M.; Kuldeyev, E.I.; Kassymzhanov, K.K.; Uldakhanov, O. Kh. Processing of titanium production sludge with the extraction of titanium dioxide. Metalurgija 2021, 60, 411–414. [Google Scholar]
- Yessengaziyev, А.M.; Ultarakova, А.A.; Burns, P.C. Fluoroammonium method for processing of cake from leaching of titanium-magnesium production sludge. Complex Use Miner. Resour. 2022, 320, 67–74. [Google Scholar] [CrossRef]
- Yessengaziyev, A.; Ultarakova, А.; Lokhova, N.; Karshigina, Z.; Kasymzhanov, K. Study of the Alkaline Treatment Effect on Separation of Silica from the Electric Melting Dust of Ilmenite Concentrates. In Proceedings of the XXIth International Multidisciplinary Scientific Geo Conference, Science and Technologies in Geology, Exploration and Mining—SGEM 2021, Albena, Bulgaria, 16–22 August 2021; pp. 601–609. [Google Scholar] [CrossRef]
- Niwano, M.; Kurita, K.; Takeda, Y. Formation of hexafluorosilicate on Si surface treated in NH4F investigated by photoemission and surface infrared spectroscopy. Appl. Phys. Lett. 1993, 62, 1003–1005. [Google Scholar] [CrossRef]
- Karshyga, Z.; Ultarakova, A.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K. Processing of Titanium-Magnesium Production Waste. J. Ecol. Eng. 2022, 23, 215–225. [Google Scholar] [CrossRef]
- Ultarakova, A.A.; Karshyga, Z.B.; Lokhova, N.G.; Naimanbaev, M.A.; Yessengaziyev, A.M.; Burns, P. Methods of silica removal from pyrometallurgical processing wastes of ilmenite concentrate. Complex Use Miner. Resour. 2022, 322, 79–88. [Google Scholar] [CrossRef]
- GOST 18307-7; White Soot. Specifications. Revised Edition; PPC Standards Publishing House: Moscow, Russia, 1998; 18p.
- Karshyga, Z.B.; Ultarakova, A.A.; Lokhova, N.G.; Yessengaziyev, A.M.; Kuldeyev, E.I.; Kassymzhanov, K.K. Study of fluoroammonium processing of reduction smelting dusts from ilmenite concentrate. Metalurgija 2023, 62, 145–148. [Google Scholar]
- Ultarakova, A.; Karshyga, Z.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K.; Mukangaliyeva, A. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Materials 2022, 15, 8314. [Google Scholar] [CrossRef]
- GOST 9808-84; Pigment Titanium Dioxide. Specifications. 2nd Revised Edition; PPC Standards Publishing House: Moscow, Russia, 2004; 18p.
Ti | Si | Fe | Cr | Mn | Zn | Al | Mg | O | Others |
---|---|---|---|---|---|---|---|---|---|
26.30 | 12.15 | 18.14 | 0.47 | 3.12 | 0.52 | 0.45 | 0.80 | 37.03 | 1.02 |
Temperature, °C | Residue Yield from Fluorination,% | Content of Components in the Residue, wt% | |||||||
---|---|---|---|---|---|---|---|---|---|
Si | Ti | Fe | Cr | Mn | O | F | Others | ||
200 | 79.6 | 8.4 | 17.3 | 12.9 | 0.40 | 3.2 | 9.1 | 30.1 | 18.60 |
230 | 68.4 | 6.4 | 17.6 | 14.6 | 0.51 | 2.9 | - | 31.1 | 26.89 |
250 | 54.4 | 2.7 | 25.7 | 19.6 | 0.65 | 4.5 | 10.1 | 24.3 | 12.45 |
260 | 47.8 | 1.7 | 28.7 | 20.7 | 0.76 | 4.7 | 13.9 | 26.6 | 2.94 |
280 | 44.9 | 1.5 | 29.6 | 22.0 | 0.81 | 5.0 | 14.8 | 25.9 | 0.39 |
Duration of Experiment, h | Residue Yield from Fluorination,% | Content in the Residue, wt% | |||||||
---|---|---|---|---|---|---|---|---|---|
Si | Ti | Fe | Cr | Mn | O | F | Others | ||
2 | 65.3 | 5.4 | 21.7 | 17.2 | 0.57 | 3.8 | 8.1 | 25.4 | 17.83 |
4 | 58.2 | 4.8 | 25.4 | 17.0 | 0.72 | 4.3 | 10.7 | 26.9 | 10.18 |
6 | 47.8 | 1.7 | 28.7 | 20.7 | 0.76 | 4.7 | 13.9 | 26.6 | 2.94 |
8 | 43.7 | 1.5 | 30.3 | 22.2 | 0.80 | 5.1 | 13.0 | 27.0 | 0.10 |
Dust:NH4HF2 Mass Ratio | Residue Yield from Fluorination,% | Content in the Residue, wt% | |||||||
---|---|---|---|---|---|---|---|---|---|
Si | Ti | Fe | Cr | Mn | O | F | Others | ||
1:0.5 | 32.1 | 1.5 | 29.7 | 20.6 | 0.73 | 4.6 | 30.2 | 8.7 | 3.97 |
1:0.9 | 47.8 | 1.7 | 28.7 | 20.7 | 0.76 | 4.7 | 13.9 | 26.6 | 2.94 |
1:1.5 | 70.8 | 3.05 | 19.7 | 15.4 | 0.55 | 3.4 | 11.0 | 27.8 | 19.1 |
Duration, min | Content * in the Cinder, wt% | |||
---|---|---|---|---|
FeO | SiO2 | MnO | Cr2O3 | |
init. | 23.0 | 1.28 | 2.35 | 0.39 |
30 | 40.6 | 0.071 | 4.32 | 0.64 |
60 | 40.4 | 0.058 | 4.36 | 0.69 |
90 | 41.6 | 0.057 | 4.39 | 0.74 |
120 | 42.1 | 0.051 | 4.44 | 0.76 |
180 | 43.7 | 0.043 | 4.50 | 0.77 |
240 | 45.4 | 0.036 | 4.58 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karshyga, Z.; Ultarakova, A.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K.; Myrzakulov, M. Technology for Complex Processing of Electric Smelting Dusts of Ilmenite Concentrates to Produce Titanium Dioxide and Amorphous Silica. Metals 2022, 12, 2129. https://doi.org/10.3390/met12122129
Karshyga Z, Ultarakova A, Lokhova N, Yessengaziyev A, Kassymzhanov K, Myrzakulov M. Technology for Complex Processing of Electric Smelting Dusts of Ilmenite Concentrates to Produce Titanium Dioxide and Amorphous Silica. Metals. 2022; 12(12):2129. https://doi.org/10.3390/met12122129
Chicago/Turabian StyleKarshyga, Zaure, Almagul Ultarakova, Nina Lokhova, Azamat Yessengaziyev, Kaisar Kassymzhanov, and Maxat Myrzakulov. 2022. "Technology for Complex Processing of Electric Smelting Dusts of Ilmenite Concentrates to Produce Titanium Dioxide and Amorphous Silica" Metals 12, no. 12: 2129. https://doi.org/10.3390/met12122129
APA StyleKarshyga, Z., Ultarakova, A., Lokhova, N., Yessengaziyev, A., Kassymzhanov, K., & Myrzakulov, M. (2022). Technology for Complex Processing of Electric Smelting Dusts of Ilmenite Concentrates to Produce Titanium Dioxide and Amorphous Silica. Metals, 12(12), 2129. https://doi.org/10.3390/met12122129