BCC-Based Mg–Li Alloy with Nano-Precipitated MgZn2 Phase Prepared by Multidirectional Cryogenic Rolling
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation and Processing of Raw Materials
2.2. Microstructural Characterization
2.3. Compression Test
3. Results
3.1. Microstructures
3.2. Mechanical Properties
4. Discussion
4.1. Precipitation of the MgZn2 Phase
4.2. The Strengthening Effect of MgZn2
5. Conclusions
- Cryogenic MDR triggers the formation of a large number of nano-grains.
- The differences in MDR and R deformation lead to shear-stress changes inside the alloy.
- A large amount of uniformly dispersed nano-precipitation-phase MgZn2 appears only in the cryogenic MDR LZ1641 alloy.
- MgZn2 has an obstructive effect on the migration of grain boundaries.
- MgZn2 cannot be cut by dislocations, by which the effect of dislocation strengthening is consolidated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.H.; Xu, L.; Wu, R.Z.; Feng, J.; Zhang, J.H.; Hou, L.G.; Zhang, M.L. Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg-9Li-3Al-1Zn Alloy Processed by Accumulative Roll Bonding. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 490–499. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Zu, T.T.; Han, E.H.; Wang, L. Effect of temperature on the mechanical abnormity of the quasicrystal reinforced Mg–4%Li–6%Zn–1.2%Y alloy. J. Magnes. Alloys 2015, 3, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.H.; Wang, L.Y.; Zhou, B.J.; Fischer, T.; Yi, S.B.; Zeng, X.Q. Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction. Scr. Mater 2018, 143, 44–48. [Google Scholar] [CrossRef]
- Li, B.; Hou, L.; Wu, R.; Zhang, J.; Li, X.; Zhang, M.; Dong, A.; Sun, B. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 2017, 722, 772–777. [Google Scholar] [CrossRef]
- Fei, P.; Qu, Z.; Wu, R. Microstructure and hardness of Mg–9Li–6Al–xLa (x=0, 2, 5) alloys during solid solution treatment. Mater. Sci. Eng. A 2015, 625, 169–176. [Google Scholar] [CrossRef]
- Mahmudi, R.; Shalbafi, M.; Karami, M.; Geranmayeh, A.R. Effect of Li content on the indentation creep characteristics of cast Mg-Li-Zn alloys. Mater. Des. 2015, 75, 184–190. [Google Scholar] [CrossRef]
- Karewar, S.; Gupta, N.; Groh, S.; Martinez, E.; Caro, A.; Srinivasan, S.G. Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comp. Mater. Sci. 2017, 126, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hao, H.L.; Fu, G.Y.; Liu, B.S.; Li, R.G.; Wu, R.Z.; Pan, H.C. Microstructure and Mechanical Property of Hot-Rolled Mg–2Ag Alloy Prepared with Multi-pass Rolling. Acta Metall. Sin. (Engl. Lett.) 2022. [Google Scholar] [CrossRef]
- Alam, M.; Groh, S. Dislocation modeling in bcc lithium: A comparison between continuum and atomistic predictions in the modified embedded atoms method. J. Phys. Chem. Solids 2015, 82, 1–9. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Stanford, N.; Davies, C.H.J.; Nie, J.F.; Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev. 2019, 64, 27–62. [Google Scholar] [CrossRef]
- Liu, X.; Du, G.; Wu, R.; Niu, Z.; Zhang, M. Deformation and microstructure evolution of a high strain rate superplastic Mg-Li-Zn alloy. J. Alloys Compd. 2011, 509, 9558–9561. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Capolungo, L.; Hunter, A. Screw dislocation impingement and slip transfer at fcc-bcc semicoherent interfaces. Scr. Mater 2021, 201, 113977. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, S.; Wu, R.; Jin, S.; Zhang, J.; Hou, L. High strength BCC magnesium-Lithium alloy processed by cryogenic rolling and room temperature rolling and its strengthening mechanisms. Mater. Charact. 2022, 187, 111869. [Google Scholar] [CrossRef]
- Wang, B.J.; Xu, D.K.; Cai, X.; Qiao, Y.X.; Sheng, L.Y. Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8 wt.%Li alloy. J. Magnes. Alloys 2021, 9, 560–568. [Google Scholar] [CrossRef]
- Hu, L.F.; Gu, Q.F.; Li, Q.; Zhang, J.Y.; Wu, G.X. Effect of extrusion temperature on microstructure, thermal conductivity and mechanical properties of a Mg-Ce-Zn-Zr alloy. J. Alloys Compd. 2018, 741, 1222–1228. [Google Scholar] [CrossRef]
- Jin, S.; Liu, H.; Wu, R.; Zhong, F.; Hou, L.; Zhang, J. Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy. Mater. Sci. Eng. A 2020, 788, 139611. [Google Scholar] [CrossRef]
- Li, C.; Deng, B.; Dong, L.; Liu, X.; Du, K.; Shi, B.; Dong, Y.; Peng, F.; Zhang, Z. Effect of Zn addition on the microstructure and mechanical properties of as-cast BCC Mg-11Li based alloys. J. Alloys Compd. 2022, 895, 162718. [Google Scholar] [CrossRef]
- Ji, Q.; Wang, Y.; Wu, R.; Wei, Z.; Ma, X.; Zhang, J.; Hou, L.; Zhang, M. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes. Mater. Charact. 2020, 160, 110135. [Google Scholar] [CrossRef]
- Yuan, T.; Wu, Y.; Liang, Y.; Jiao, Q.; Zhang, Q.; Jiang, J. Microstructural control and mechanical properties of a high Li-containing Al-Mg-Li alloy. Mater. Charact. 2021, 172, 110895. [Google Scholar] [CrossRef]
- Qin, S.; Lee, S.; Tsuchiya, T.; Matsuda, K.; Horita, Z.; Kocisko, R.; Kvackaj, T. Aging behavior of Al-Li-(Cu, Mg) alloys processed by different deformation methods. Mater. Des. 2020, 196, 109139. [Google Scholar] [CrossRef]
- Shao, H.; Huang, Y.; Liu, Y.; Xiao, Z. Structural stability, anisotropic elasticities and electronic structure of η-MgZn2 under pressures: A first-principle investigation. Solid State Commun. 2022, 343, 114644. [Google Scholar] [CrossRef]
- Liu, H.; Nie, J.F. Phase field simulation of microstructures of Mg and Al alloys. Mater. Sci. Technol. 2017, 33, 2159–2172. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, L.H.; Li, Y.; Wang, H.T.; Liu, J.B.; Liaw, P.K.; Bei, H.B.; Zhang, Z.W. Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates. J. Alloys Compd. 2018, 735, 2625–2633. [Google Scholar] [CrossRef]
- Zhou, B.-C.; Shang, S.-L.; Wang, Y.; Liu, Z.-K. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study. Acta Mater. 2016, 103, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Amsler, M.; Hegde, V.I.; Saal, J.E.; Issa, A.; Zhou, B.-C.; Zeng, X.; Wolverton, C. Crystal structure, energetics, and phase stability of strengthening precipitates in Mg alloys: A first-principles study. Acta Mater. 2018, 158, 65–78. [Google Scholar] [CrossRef]
- Zhong, Q.; Pan, D.; Zuo, S.; Li, X.; Luo, H.; Lin, Y. Fabrication of MgZn intermetallic layer with high hardness and corrosion resistance on AZ31 alloy. Mater. Charact. 2021, 179, 111365. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, S.; Xu, C.; Zeng, X.; Yang, X. Effect of cryogenic treatment on the microstructure and mechanical properties of Mg-1.5Zn-0.15Gd magnesium alloy. Mater. Sci. Eng. A 2013, 588, 76–81. [Google Scholar] [CrossRef]
- Nagarajan, D.; Caceres, C.H. The friction stress of the Hall-Petch relationship of pure Mg and solid solutions of Al, Zn, and Gd. Metall. Mater. Trans. A 2018, 49, 5288–5297. [Google Scholar] [CrossRef]
- Doherty, R.D. Chapter 15—Diffusive phase transformations in the solid state. In Physical Metallurgy, 4th ed.; Cahn, R.W., Haasen, P., Eds.; North-Holland: Oxford, UK, 1996; pp. 1363–1505. [Google Scholar]
- Zheng, B.; Zhao, L.; Hu, X.B.; Dong, S.J.; Li, H. First-principles studies of Mg17Al12, Mg2Al3, Mg2Sn, MgZn2, Mg2Ni and Al3Ni phases. Phys. B 2019, 560, 255–260. [Google Scholar] [CrossRef]
- Aaronson, H.I.; Kinsman, K.R.; Russell, K.C. The volume free energy change associated with precipitate nucleation. Scr. Metall. 1970, 4, 101–106. [Google Scholar] [CrossRef]
- Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.; El-Azab, A. Particle-grain boundary interactions: A phase field study. Comp. Mater. Sci. 2017, 134, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.R.; Liu, W.; Hou, H.Y.; Liu, F. Pinning effect of coherent particles on moving planar grain boundary: Theoretical models and molecular dynamics simulations. Materialia 2019, 5, 100225. [Google Scholar] [CrossRef]
- Chang, K.; Feng, W.; Chen, L.-Q. Effect of second-phase particle morphology on grain growth kinetics. Acta Mater. 2009, 57, 5229–5236. [Google Scholar] [CrossRef]
- Huber, L.; Rottler, J.; Militzer, M. Atomistic simulations of the interaction of alloying elements with grain boundaries in Mg. Acta Mater. 2014, 80, 194–204. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Ma, X.; Wu, R.; Jin, S.; Zhang, J.; Hou, L. BCC-Based Mg–Li Alloy with Nano-Precipitated MgZn2 Phase Prepared by Multidirectional Cryogenic Rolling. Metals 2022, 12, 2114. https://doi.org/10.3390/met12122114
Ji Q, Ma X, Wu R, Jin S, Zhang J, Hou L. BCC-Based Mg–Li Alloy with Nano-Precipitated MgZn2 Phase Prepared by Multidirectional Cryogenic Rolling. Metals. 2022; 12(12):2114. https://doi.org/10.3390/met12122114
Chicago/Turabian StyleJi, Qing, Xiaochun Ma, Ruizhi Wu, Siyuan Jin, Jinghuai Zhang, and Legan Hou. 2022. "BCC-Based Mg–Li Alloy with Nano-Precipitated MgZn2 Phase Prepared by Multidirectional Cryogenic Rolling" Metals 12, no. 12: 2114. https://doi.org/10.3390/met12122114
APA StyleJi, Q., Ma, X., Wu, R., Jin, S., Zhang, J., & Hou, L. (2022). BCC-Based Mg–Li Alloy with Nano-Precipitated MgZn2 Phase Prepared by Multidirectional Cryogenic Rolling. Metals, 12(12), 2114. https://doi.org/10.3390/met12122114