On the Distillation Separation of Aluminum–Tellurium System Melts under Equilibrium Condition
Abstract
:1. Introduction
2. Experimental Part
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volodin, V.N.; Isakova, R.A.; Khrapunov, V.E. Phase equilibrium liquid-vapor in metal systems and prediction of parameters of vacuum distillation processes. Nonferr. Met. 2010, 4, 55. [Google Scholar]
- Burabaeva, N.M.; Volodin, V.N.; Trebukhov, S.A.; Nitsenko, A.V.; Tuleutai, F. Thermodynamics of the Formation and Vaporization of Melts in an Aluminum Telluride–Tellurium System. Russ. J. Phys. Chem. A 2022, 96, 241. [Google Scholar] [CrossRef]
- Burabayeva, N.M.; Volodin, V.N.; Trebukhov, S.A.; Nitsenko, A.V.; Linnik, K.A. Thermodynamics of Formation and Evaporation of Aluminum and Aluminum Telluride Melts. In Proceedings of the 8 th World Congress on Mechanical, Chemical, and Material Engineering (MCM’22), Prague, Czech Republic, 31 July–2 August 2022. [Google Scholar]
- Burabaeva, N.M.; Volodin, V.N.; Nitsenko, A.V.; Tuleutai, F.K. Evaporation thermodynamics and sublimation of aluminum telluride. Kompleks. Ispol’zovanie Miner. Syr’a = Complex Use Miner. Resour. 2022, 2, 87. [Google Scholar] [CrossRef]
- Weisburd, S.E. Physico-chemical properties and features of the structure of sulfide melts. Metallurgy 1996, 304. [Google Scholar]
- Menéndez-Proupina, E.; Casanova-Páeza, M.; Montero-Alejo, A.L. Symmetry and thermodynamics of tellurium vacancies in cadmium telluride. Phys. B Condens. Matter 2019, 568, 84. [Google Scholar] [CrossRef]
- Liu, S.; Liu, F.; Zhu, X.; Bai, Y. lemental Ratio Controlled Semiconductor Type of Bismuth Telluride Alloy Thin Films. Rare Met. Mater. Eng. 2015, 44, 3041. [Google Scholar] [CrossRef]
- Babanly, N.B.; Orujlu, E.N.; Imamaliyev, S.Z. Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5. J. Chem. Thermodyn. 2019, 128, 78. [Google Scholar] [CrossRef]
- Wang, L.-h. Study of thermal expansion of mercury indium telluride crystals by XRD technique. Trans. Nonferrous Met. Soc. China 2009, 19, 776. [Google Scholar] [CrossRef]
- Novoselova, A.V.; Pashinkin, A.S. Vapor pressure of volatile metal chalcogenides. Mosc. Sci. 1978, 112. [Google Scholar]
- Kapustinsky, A.F.; Golutvin, Y.M. Thermochemistry and the structure of atoms. Message 5. Heat of formation of aluminum compounds with elements of the VI group of the periodic system D.I. Mendeleev. News of Academy of Sciences of the USSR. Dep. of Chem. Sciences 1951, 2, 192. [Google Scholar]
- Joël, H.A.; Schneider, A. Die Bildungsentalpie von Aluminiumtellurid. Naturwissenschaften 1967, 54, 587. [Google Scholar] [CrossRef]
- Gattow, G. Orientierende Berechnung der Bildungwärmen von Aluminium (I,II)-chalkogeniden. Angew. Chem. 1956, 68, 521. [Google Scholar] [CrossRef]
- Ficalora, P.J.; Hastie, J.W.; Margrave, J.L. Mass Spectrometric Studies at High Temperatures. XXVII. The Reactions of Aluminum Vapor with S2(g), Se2(g), and Te2(g). J. Phys. Chem. 1968, 72, 1660. [Google Scholar]
- Said, H.; Castanet, R.; Kehiaian, H.V. Étude calorimétrique du systéme binaire aluminium-tellure. J. Less-Comm. Met. 1976, 46, 209. [Google Scholar] [CrossRef]
- Said, H.; Chastel, R.; Bergman, C.; Castanet, R. Thermodynamic investigation on Al–Te. Alloys by differential thermal analysis and Knudsen-cell mass-spectrometry. Z. Met. 1981, 72, 360. [Google Scholar]
- Ferro, D.; Nappi, B.M.; Balducci, G.; Placente, V. A vaporization study of Al2Te3. Thermochim. Acta. 1980, 35, 35. [Google Scholar] [CrossRef]
- Blot, J.; Rogez, J.; Castanet, R. Étude potentiométrique des alliages liquids aluminium–étain et aluminium–tellure. J. Less-Comm. Met. 1986, 118, 67. [Google Scholar] [CrossRef]
- Kniep, R.; Blees, P. Phasengleichgewichte und intermediäre Phasen im System Al–Te. Z. Nat. 1988, 43b, 182. [Google Scholar]
- Prabhu, N.; Howe, J.M. The Al–Te (Aluminium–Tellurium) System Bull. Alloy. Phase Diagr. 1990, 11, 202. [Google Scholar] [CrossRef]
- Oh, C.-S.; Lee, D.N. Thermodynamic assessments of the In–Te and Al–Te systems. CALPHAD 1993, 17, 175. [Google Scholar] [CrossRef]
- Volodin, V.N.; Tuleushev, Y.Z. The Liquid-Vapor Phase Transition in a Copper-Calcium System. Russ. J. Phys. Chem. A 2020, 94, 1300. [Google Scholar] [CrossRef]
- Lyakisheva, N.P.M. (Ed.) State Diagrams of Binary Metallic Systems; Mashinostroenie: Moscow, Russia, 1996; Volume 1, p. 992. [Google Scholar]
- Clark, J.B.; Richter, P.W. The determination of composition–temperature–pressure phase diagrams of binary alloy systems. High Pressure Sci. and Technol. In Proceedings of the 7th International AIRAPT Conference, Le Creusot, France, 30 July–3 August 1979. [Google Scholar]
- Trebukhov, S.; Volodin, V.; Nitsenko, A.; Burabaeva, N.; Ruzakhunova, G. Recovery of Zinc from the Concentrate of Domestic Waste Processing by Vacuum Distillation. Metals 2022, 12, 703. [Google Scholar] [CrossRef]
- Volodin, V.N.; Tuleushev, Y.G. The Thermodynamics of Melts and the State Diagram of the Nickel–Calcium System. Russ. J. Phys. Chem. Athis Link Is Disabl. 2020, 94, 1526. [Google Scholar] [CrossRef]
- Kolesnikov, A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russ. J. Non-Ferr. Met. 2015, 56, 1–5. [Google Scholar] [CrossRef]
Alloy Numbers | Alloy Composition, Mass % | Alloy Composition, at. | ||
---|---|---|---|---|
Te | Al | Te | Al | |
1 | 40.21 | 57.79 | 12.45 | 87.55 |
2 | 59.54 | 60.46 | 23.73 | 76.27 |
3 | 72.52 | 27.48 | 35.82 | 64.18 |
4 | 80.47 | 19.53 | 46.56 | 53.44 |
5 | 87.65 | 12.35 | 60.00 | 40.00 |
6 | 90.13 | 9.87 | 65.88 | 34.12 |
7 | 92.74 | 7.26 | 72.98 | 27.02 |
8 | 95.88 | 4.12 | 83.11 | 16.89 |
9 | 97.91 | 2.09 | 90.83 | 9.17 |
Al2Te3 Content in the Alloy, mol. | At Pressure, Pa: | |||
---|---|---|---|---|
101,325 | 6670 | |||
Boiling Point, °C | Al2Te3 Content in the Steam, Mole Fraction | Boiling Point, °C | Al2Te3 Content in the Steam, Mole Fraction | |
1 | 1352 | 1 | 911 | 1 |
0.8 | 1407 | 0.9999 | 927 | ~1 |
0.6 | 1441 | 0.9997 | 937 | ~1 |
0.4 | 1459 | 0.9996 | 941 | ~1 |
0.2 | 1496 | 0.9994 | 959 | ~1 |
0.1 | 1591 | 0.9983 | 1010 | ~1 |
5 × 10−2 | 1749 | 0.9923 | 1089 | ~1 |
1 × 10−2 | 2252 | 0.7412 | 1373 | 0.9978 |
5 × 10−3 | 2385 | 0.4769 | 1544 | 0.9831 |
3 × 10−3 | - | - | 1683 | 0.9325 |
1 × 10−3 | 2493 | 0.1156 | 1905 | 0.5726 |
5 × 10−4 | - | - | 1967 | 0.3315 |
1 × 10−4 | - | - | 2014 | 0.0739 |
0 | 2520 | 0 | 2026 | 0 |
Te Content in the Alloy, Mole Fraction | At Pressure, Pa: | |||
---|---|---|---|---|
101,325 | 6670 | |||
Boiling Point, °C | Te Content in the Steam, Mole Fraction | Boiling Point, °C | Te Content in the Steam, Mole Fraction | |
1 | 989 | 1 | 745 | 1 |
0.8 | 1017 | 0.9708 | 774 | 0.9488 |
0.6 | 1049 | 0.9152 | 795 | 0.7858 |
0.4 | 1085 | 0.8446 | 804 | 0.6955 |
0.2 | 1145 | 0.7166 | 811 | 0.6536 |
0.1 | 1205 | 0.5597 | 830 | 0.5605 |
5 × 10−2 | 1258 | 0.3905 | 855 | 0.4188 |
1 × 10−2 | 1327 | 0.1143 | 895 | 0.1336 |
0 | 1352 | 0 | 911 | 0 |
Composition of the Alloy, atm. % | J/(mole·K) | J/(mole·K) | J/(mole·K) | J/(mole·K) | |
---|---|---|---|---|---|
Te | Al | ||||
0 | 100 | - | - | 0 ± 0 | 0 ± 0 |
10 | 90 | - | 9.10 ± 0.53 | 0.86 ± 0.05 | 2.24 ± 0.13 |
20 | 80 | - | 8.00 ± 0.47 | 1.20 ± 0.07 | 3.46 ± 0.20 |
30 | 70 | - | 7.24 ± 0.42 | 1.77 ± 0.10 | 4.51 ± 0.26 |
40 | 60 | - | 5.88 ± 0.34 | 3.78 ± 0.22 | 5.18 ± 0.30 |
50 | 50 | - | 3.62 ± 0.21 | 11.17 ± 0.65 | 4.87 ± 0.28 |
60 | 40 | - | 0 ± 0.0 | - | 0 ± 0.0 |
70 | 30 | 15.84 ± 1.38 | 4.62 ± 0.40 | - | 7.43 ± 0.65 |
80 | 20 | −2.66 ± 0.23 | 15.30 ± 1.34 | - | 6.32 ± 0.55 |
90 | 10 | −4.75 ± 0.41 | 16.59 ± 1.45 | - | 0.59 ± 0.05 |
100 | 0 | 0 ± 0 | - | - | 0 ± 0 |
Composition of the Alloy, atm. % | J/(mole·K) | J/(mole·K) | J/(mole·K) | J/(mole·K) | |
---|---|---|---|---|---|
Te | Al | ||||
0 | 100 | - | - | 0 ± 0 | 0 ± 0 |
10 | 90 | - | 6.37 ± 0.37 | −0.25 ± 0.01 | 0.86 ± 0.05 |
20 | 80 | - | 7.05 ± 0.41 | −0.44 ± 0.03 | 2.06 ± 0.12 |
30 | 70 | - | 6.44 ± 0.38 | 0.05 ± 0.00 | 3.24 ± 0.19 |
40 | 60 | - | 5.14 ± 0.30 | 1.95 ± 0.11 | 4.08 ± 0.24 |
50 | 50 | - | 3.20 ± 0.19 | 8.29 ± 0.48 | 4.05 ± 0.24 |
60 | 40 | - | 0 ± 0.0 | - | 0 ± 0.0 |
70 | 30 | 6.12 ± 0.53 | 3.59 ± 0.31 | - | 4.22 ± 0.37 |
80 | 20 | −12.20 ± 1.06 | 14.03 ± 1.22 | - | 0.91 ± 0.08 |
90 | 10 | −9.99 ± 0.87 | 7.01 ± 0.61 | - | −5.74 ± 0.50 |
100 | 0 | 0 ± 0 | - | - | 0 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burabaeva, N.; Volodin, V.; Trebukhov, S.; Nitsenko, A.; Linnik, X. On the Distillation Separation of Aluminum–Tellurium System Melts under Equilibrium Condition. Metals 2022, 12, 2059. https://doi.org/10.3390/met12122059
Burabaeva N, Volodin V, Trebukhov S, Nitsenko A, Linnik X. On the Distillation Separation of Aluminum–Tellurium System Melts under Equilibrium Condition. Metals. 2022; 12(12):2059. https://doi.org/10.3390/met12122059
Chicago/Turabian StyleBurabaeva, Nurila, Valeriy Volodin, Sergey Trebukhov, Alina Nitsenko, and Xeniya Linnik. 2022. "On the Distillation Separation of Aluminum–Tellurium System Melts under Equilibrium Condition" Metals 12, no. 12: 2059. https://doi.org/10.3390/met12122059
APA StyleBurabaeva, N., Volodin, V., Trebukhov, S., Nitsenko, A., & Linnik, X. (2022). On the Distillation Separation of Aluminum–Tellurium System Melts under Equilibrium Condition. Metals, 12(12), 2059. https://doi.org/10.3390/met12122059