The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact
Abstract
:1. Introduction
2. Computational Methods
2.1. Molecular Dynamics
2.2. Dislocation Density-Based Crystalline Plasticity (DCP) Simulations
3. Results
Molecular Dynamics Simulations
4. High Strain-Rate Dislocation Density-Based Crystalline Plasticity
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, H.; Sanborn, B.; Lu, W.-Y.; Song, B. Mechanical Characterization of 304L-VAR Stainless Steel in Tension with a Full Coverage of Low, Intermediate, and High Strain Rates. Mech. Mater. 2021, 152, 103654. [Google Scholar] [CrossRef]
- Lu, S.; Li, D.; Brenner, D.W. Molecular Dynamics Simulations of Plastic Damage in Metals. In Handbook of Damage Mechanics; Voyiadjis, G.Z., Ed.; Springer New York: New York, NY, USA, 2015; pp. 453–486. ISBN 978-1-4614-5588-2. [Google Scholar]
- Kositski, R.; Mordehai, D. A Dislocation-Based Dynamic Strength Model for Tantalum across a Large Range of Strain Rates. J. Appl. Phys. 2021, 129, 165108. [Google Scholar] [CrossRef]
- Dixit, N.; Xie, K.Y.; Hemker, K.J.; Ramesh, K.T. Microstructural Evolution of Pure Magnesium under High Strain Rate Loading. Acta Mater. 2015, 87, 56–67. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Guo, W.-G.; Kihl, D.P. Thermomechanical Response of AL-6XN Stainless Steel over a Wide Range of Strain Rates and Temperatures. J. Mech. Phys. Solids 2001, 49, 1823–1846. [Google Scholar] [CrossRef]
- Bryukhanov, I.A. Atomistic Simulation of the Shock Wave in Copper Single Crystals with Pre-Existing Dislocation Network. Int. J. Plast. 2022, 151, 103171. [Google Scholar] [CrossRef]
- Neogi, A.; Mitra, N. Evolution of Dislocation Mechanisms in Single-Crystal Cu under Shock Loading in Different Directions. Model. Simul. Mater. Sci. Eng. 2017, 25, 025013. [Google Scholar] [CrossRef]
- Li, C.; Yang, K.; Tang, X.C.; Lu, L.; Luo, S.N. Spall Strength of a Mild Carbon Steel: Effects of Tensile Stress History and Shock-Induced Microstructure. Mater. Sci. Eng. A 2019, 754, 461–469. [Google Scholar] [CrossRef]
- Wang, X.-X.; He, A.-M.; Zhou, T.-T.; Wang, P. Spall Damage in Single Crystal Tin under Shock Wave Loading: A Molecular Dynamics Simulation. Mech. Mater. 2021, 160, 103991. [Google Scholar] [CrossRef]
- Chen, J.; Mathaudhu, S.N.; Thadhani, N.; Dongare, A.M. Correlations between Dislocation Density Evolution and Spall Strengths of Cu/Ta Multilayered Systems at the Atomic Scales: The Role of Spacing of KS Interfaces. Materialia 2019, 5, 100192. [Google Scholar] [CrossRef]
- Dongare, A.M.; Rajendran, A.M.; LaMattina, B.; Zikry, M.A.; Brenner, D.W. Atomic Scale Simulations of Ductile Failure Micromechanisms in Nanocrystalline Cu at High Strain Rates. Phys. Rev. B 2009, 80, 104108. [Google Scholar] [CrossRef]
- Dongare, A.M.; Rajendran, A.M.; LaMattina, B.; Zikry, M.A.; Brenner, D.W. Atomic Scale Studies of Spall Behavior in Nanocrystalline Cu. J. Appl. Phys. 2010, 108, 113518. [Google Scholar] [CrossRef]
- Rice, B.; Sewell, T.; Brenner, D.; Holian, B. Overview of Atomistic Molecular Simulation Methods. In ITRI Study of Molecular Dynamics Simulations of Detonation Phenomena; ITRI Press: Laurel, MD, USA, 2003. [Google Scholar]
- Hoover, W.G. Molecular Dynamics; Lecture notes in Physics; Springer: Berlin/Heidelberg, Germany, 1986; ISBN 978-3-540-16789-1. [Google Scholar]
- Shanthraj, P.; Zikry, M.A. Dislocation Density Evolution and Interactions in Crystalline Materials. Acta Mater. 2011, 59, 7695–7702. [Google Scholar] [CrossRef]
- Brenner, D.W.; Robertson, D.H.; Elert, M.L.; White, C.T. Detonations at Nanometer Resolution Using Molecular Dynamics. Phys. Rev. Lett. 1993, 70, 2174–2177. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Brenner, D.W.; Shi, Y. Detonation Initiation from Spontaneous Hotspots Formed During Cook-Off Observed in Molecular Dynamics Simulations. J. Phys. Chem. C 2011, 115, 2416–2422. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Areshkin, D.A. Quantum-Based Analytic Interatomic Forces and Materials Simulation. In Reviews in Computational Chemistry; Lipkowitz, K.B., Boyd, D.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 207–239. ISBN 978-0-470-12589-2. [Google Scholar]
- Sinnott, S.B.; Brenner, D.W. Three Decades of Many-Body Potentials in Materials Research. MRS Bull. 2012, 37, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Brenner, D.W. Simulated Thermal Decomposition and Detonation of Nitrogen Cubane by Molecular Dynamics. J. Chem. Phys. 2007, 127, 134503. [Google Scholar] [CrossRef]
- Shi, Y.; Brenner, D.W. Molecular Simulation of the Influence of Interface Faceting on the Shock Sensitivity of a Model Plastic Bonded Explosive. J. Phys. Chem. B 2008, 112, 14898–14904. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef] [Green Version]
- Holian, B.L. Atomistic Computer Simulations of Shock Waves. Shock Waves 1995, 5, 149–157. [Google Scholar] [CrossRef]
- Germann, T.C.; Holian, B.L.; Lomdahl, P.S.; Ravelo, R. Orientation Dependence in Molecular Dynamics Simulations of Shocked Single Crystals. Phys. Rev. Lett. 2000, 84, 5351–5354. [Google Scholar] [CrossRef]
- Meng, Z.; Keten, S. Unraveling the Effect of Material Properties and Geometrical Factors on Ballistic Penetration Energy of Nanoscale Thin Films. J. Appl. Mech. 2018, 85, 121004. [Google Scholar] [CrossRef]
- Dewapriya, M.A.N.; Miller, R.E. Molecular Dynamics Study of the Mechanical Behaviour of Ultrathin Polymer–Metal Multilayers under Extreme Dynamic Conditions. Comput. Mater. Sci. 2020, 184, 109951. [Google Scholar] [CrossRef]
- Zhang, C.; Kalia, R.K.; Nakano, A.; Vashishta, P.; Branicio, P.S. Deformation Mechanisms and Damage in α-Alumina under Hypervelocity Impact Loading. J. Appl. Phys. 2008, 103, 083508. [Google Scholar] [CrossRef] [Green Version]
- Kolar, H.R.; Spence, J.C.H.; Alexander, H. Observation of Moving Dislocation Kinks and Unpinning. Phys. Rev. Lett. 1996, 77, 4031–4034. [Google Scholar] [CrossRef] [PubMed]
- Voisin, T.; Grapes, M.D.; Li, T.T.; Santala, M.K.; Zhang, Y.; Ligda, J.P.; Lorenzo, N.J.; Schuster, B.E.; Campbell, G.H.; Weihs, T.P. In Situ TEM Observations of High-Strain-Rate Deformation and Fracture in Pure Copper. Mater. Today 2020, 33, 10–16. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, Y. Lomer-Cottrell Locks with Multiple Stair-Rod Dislocations in a Nanostructured Al Alloy Processed by Severe Plastic Deformation. Mater. Sci. Eng. A 2019, 747, 177–184. [Google Scholar] [CrossRef]
- Ledbetter, H.M.; Reed, R.P. Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys. J. Phys. Chem. Ref. Data 1973, 2, 531–618. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Fischer, F.; Schmitz, G.; Eich, S.M. A Systematic Study of Grain Boundary Segregation and Grain Boundary Formation Energy Using a New Copper–Nickel Embedded-Atom Potential. Acta Mater. 2019, 176, 220–231. [Google Scholar] [CrossRef]
- Ackland, G.J.; Jones, A.P. Applications of Local Crystal Structure Measures in Experiment and Simulation. Phys. Rev. B 2006, 73, 054104. [Google Scholar] [CrossRef]
- Thompson, A.P.; Plimpton, S.J.; Mattson, W. General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials under Periodic Boundary Conditions. J. Chem. Phys. 2009, 131, 154107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honeycutt, J.D.; Andersen, H.C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Faken, D.; Jónsson, H. Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated Identification and Indexing of Dislocations in Crystal Interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Zikry, M.A. An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity. Comput. Struct. 1994, 50, 337–350. [Google Scholar] [CrossRef]
- Agarwal, G.; Valisetty, R.R.; Namburu, R.R.; Rajendran, A.M.; Dongare, A.M. The Quasi-Coarse-Grained Dynamics Method to Unravel the Mesoscale Evolution of Defects/Damage during Shock Loading and Spall Failure of Polycrystalline Al Microstructures. Sci. Rep. 2017, 7, 12376. [Google Scholar] [CrossRef]
α,β= | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plane | (111) | (111) | (111) | () | () | () | () | () | () | () | () | () |
Direction | [] | [] | [] | [011] | [] | [101] | [101] | [110] | [] | [011] | [110] | [] |
Expression | |
---|---|
Shockley | Shockley | Lomer | ||||||
Hirth | ||||||||
Lomer | ||||||||
⅓[010] |
Method | Cu Film Thickness (FT) | Impactor Diameter (ID) | Initial Impact Velocity | Maximum Penetration Depth (PD) | ID/FT | PD/FT |
---|---|---|---|---|---|---|
MD | 4 nm | 3.8 nm | 500 m/s | 0.36 nm | 95% | 9% |
MD | 4 nm | 3.8 nm | 1500 m/s | 2.2 nm | 95% | 55% |
DCP | 43 μm | 64 μm | 340 m/s | 5.0 μm | 149% | 12% |
Copper | Nickel | |||
---|---|---|---|---|
EAM | DCP | EAM | DCP | |
a0 (nm) | 0.3615 | 0.3615 | 0.352 | 0.352 |
Young’s Modulus, E (GPa) | 119.2 | 110 | 204.0 | 200 |
Bulk Modulus, B (GPa) | 138.4 | 91.7 | 181.0 | 167 |
C11 (GPa) | 169.9 | 148 | 241.3 | 269 |
C12 (GPa) | 122.6 | 63.5 | 150.8 | 115 |
C44 (GPa) | 76.2 | 42.3 | 127.3 | 76.9 |
Shear Modulus (GPa) | 43.92 | 42.3 | 77.72 | 76.9 |
Poisson’s Ratio,ν | 0.36 | 0.3 | 0.31 | 0.3 |
Static Yield Stress (MPa) | - | 110 | - | 110 |
Initial Mobile Density (m−2) | - | 106 | - | 106 |
Initial Immobile Density (m−2) | - | 108 | - | 108 |
Saturation Density (m−2) | - | 1014 | - | 1014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granger, L.; Chen, M.-J.; Brenner, D.; Zikry, M. The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact. Metals 2022, 12, 2036. https://doi.org/10.3390/met12122036
Granger L, Chen M-J, Brenner D, Zikry M. The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact. Metals. 2022; 12(12):2036. https://doi.org/10.3390/met12122036
Chicago/Turabian StyleGranger, Leah, Muh-Jang Chen, Donald Brenner, and Mohammed Zikry. 2022. "The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact" Metals 12, no. 12: 2036. https://doi.org/10.3390/met12122036
APA StyleGranger, L., Chen, M.-J., Brenner, D., & Zikry, M. (2022). The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact. Metals, 12(12), 2036. https://doi.org/10.3390/met12122036