The Improvement of Bonding Strength of W/Cu Joints via Nano-Treatment of the W Surface
Abstract
:1. Introduction
2. Materials and Methods
- surface nano-treatment of W through hydrothermal treatment and reduction annealing in an H2 atmosphere;
- Cu plating on the surface of nano-treated W, followed by annealing at 980 °C for 3 h to realize Cu penetrating;
- W/Cu bonding under a pure hydrogen atmosphere. The detailed parameters are introduced as follows.
2.1. Base Materials
2.2. Surface Nano-Treatment
2.3. Cu Plating and Annealing
2.4. Bonding
2.5. Characterization Methods
3. Results and Discussion
3.1. Characterization of After Surface Nano-Treatment
3.2. Morphology and EDS Analysis of Cu Plating
3.3. Tensile Strength and Microstructure Characterization of W/Cu Joints
4. Conclusions
- surface nano-treatment;
- Cu plating followed by annealing at high temperature;
- bonding process. The nano-treatment of W was achieved through hydrothermal treatment and subsequent reduction annealing at 700 °C for 3 h.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philipps, V. Tungsten as Material for Plasma-Facing Components in Fusion Devices. J. Nucl. Mater. 2011, 415, S2–S9. [Google Scholar] [CrossRef]
- Ueda, Y.; Coenen, J.W.; De Temmerman, G.; Doerner, R.P.; Linke, J.; Philipps, V.; Tsitrone, E. Research Status and Issues of Tungsten Plasma Facing Materials for ITER and Beyond. Fusion Eng. Des. 2014, 89, 901–906. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Y.; Peng, H.; Chen, J.; Wang, P. Diffusion Bonding W and RAFM-Steel with an Fe Interlayer by Hot Isostatic Pressing. Fusion Eng. Des. 2020, 158, 111796. [Google Scholar] [CrossRef]
- Hu, W.; Dong, Z.; Wang, H.; Ahamad, T.; Ma, Z. Microstructure Refinement and Mechanical Properties Improvement in the W-Y2O3 Alloys via Optimized Freeze-Drying. Int. J. Refract. Met. Hard Mater. 2021, 95, 105453. [Google Scholar] [CrossRef]
- Hu, W.; Kong, X.; Du, Z.; Khan, A.; Ma, Z. Synthesis and Characterization of Nano TiC Dispersed Strengthening W Alloys via Freeze-Drying. J. Alloys Compd. 2021, 859, 157774. [Google Scholar] [CrossRef]
- Saito, S.; Fukaya, K.; Ishiyama, S.; Sato, K. Mechanical Properties of HIP Bonded W and Cu-Alloys Joint for Plasma Facing Components. J. Nucl. Mater. 2002, 307, 1542–1546. [Google Scholar] [CrossRef]
- Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N.; Team, A.U. Materials for the Plasma-Facing Components of Fusion Reactors. J. Nucl. Mater. 2004, 329, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Mitteau, R.; Missiaen, J.M.; Brustolin, P.; Ozer, O.; Durocher, A.; Ruset, C.; Lungu, C.P.; Courtois, X.; Dominicy, C.; Maier, H.; et al. Recent Developments Toward the Use of Tungsten as Armour Material in Plasma Facing Components. Fusion Eng. Des. 2007, 82, 1700–1705. [Google Scholar] [CrossRef] [Green Version]
- Xi, S.; Zuo, K.; Li, X.; Ran, G.; Zhou, J. Study on the Solid Solubility Extension of Mo in Cu by Mechanical Alloying Cu With Amorphous Cr(Mo). Acta Mater. 2008, 56, 6050–6060. [Google Scholar] [CrossRef]
- Chapa, J.; Reimanis, I. Modeling of Thermal Stresses in a Graded Cu/W Joint. J. Nucl. Mater. 2002, 303, 131–136. [Google Scholar] [CrossRef]
- Zhao, P.; Guo, S.; Liu, G.; Chen, Y.; Li, J. Fabrication of W-Cu Functionally Graded Material with Improved Mechanical strength. J. Alloys Compd. 2014, 601, 289–292. [Google Scholar] [CrossRef]
- Chen, W.; Dong, L.; Zhang, H.; Song, J.; Deng, N.; Wang, J. Microstructure Characterization of W-Cu Alloy Sheets Produced by High Temperature and High Pressure Deformation Technique. Mater. Lett. 2017, 205, 198–201. [Google Scholar] [CrossRef]
- Batra, I.S.; Kale, G.B.; Saha, T.K.; Ray, A.K.; Derose, J.; Krishnan, J. Diffusion Bonding of a Cu–Cr–Zr Alloy to Stainless Steel and Tungsten Using Nickel as an Interlayer. Mater. Sci. Eng. A 2004, 369, 119–123. [Google Scholar] [CrossRef]
- Chong, F.L.; Chen, J.L.; Li, J.G. Thermal Analysis of Tungsten Coating on CuCrZr with Different Interlayers Used as EAST Divertor Target Materials. Mater. Des. 2008, 29, 1675–1678. [Google Scholar] [CrossRef]
- Yan, H.; Fan, J.; Han, Y.; Yao, Q.; Liu, T.; Lv, Y.; Zhang, C. Vacuum Diffusion Bonding W to W-Cu Composite: Interfacial Microstructure and Mechanical Properties. Vacuum 2019, 165, 19–25. [Google Scholar] [CrossRef]
- Wang, S.; Ling, Y.; Wang, J.; Xu, G. Microstructure and Mechanical Properties of W/Cu Vacuum Diffusion Bonding Joints Using Amorphous Fe–W Alloy as Interlayer. Vacuum 2015, 114, 58–65. [Google Scholar] [CrossRef]
- Du, J.; Huang, Y.; Liu, J.; Liu, Y.; Wang, Z. Irradiation Damage Alloying for Immiscible Alloy Systems and its Thermodynamic Origin. Mater. Des. 2019, 170, 107699. [Google Scholar] [CrossRef]
- Ermolenko, A.S.; Korolev, A.V.; Gerasimov, E.G.; Gaviko, V.S. Magnetic Field Induced Ferromagnetism in Pseudobinary PrAl2−xNix Alloys. J. Magn. Magn. Mater. 2016, 404, 133–142. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Liu, Y.; Wang, Z. Direct Diffusion Bonding of Immiscible Tungsten and Copper at Temperature Close to Copper’s Melting Point. Mater. Des. 2018, 137, 473–480. [Google Scholar] [CrossRef]
- Jiang, D.; Long, J.; Cai, M.; Lin, Y.; Fan, P.; Zhang, H.; Zhong, M. Femtosecond Laser Fabricated Micro/Nano Interface Structures Toward Enhanced Bonding Strength and Heat Transfer Capability of W/Cu joining. Mater. Des. 2017, 114, 185–193. [Google Scholar] [CrossRef]
- Ma, Z.; Hou, H.; Song, K.; Fang, Z.; Wang, L.; Gao, F.; Yang, W.; Tang, B.; Kuang, Y. Engineering Oxygen Vacancies by One-Step Growth of Distributed Homojunctions to Enhance Charge Separation for Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2020, 379, 122266. [Google Scholar] [CrossRef]
- Du, J.; Huang, Y.; Xiao, C.; Liu, Y. Building Metallurgical Bonding Interfaces in an Immiscible Mo/Cu System by Irradiation Damage Alloying (IDA). J. Mater. Sci. Technol. 2018, 34, 689–694. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, P.; Liu, Y.; Wang, Z.; Huang, Y. Nanoconical Active Structures Prepared by Anodization and Deoxidation of Molybdenum Foil and Their Activity Origin. J. Alloys Compd. 2021, 851, 156896. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Wang, Z.; Liu, Y. Preparation of a Nanoporous Active Tungsten Foil By Two-Step Anodizing and Deoxidized Annealing for Hydrogen Evolution Reaction. Nanotechnology 2019, 30, 015603. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Guo, S.; Chen, Y.; Ling, Y.; Li, J. Bonding W and W–Cu Composite With an Amorphous W–Fe Coated Copper Foil Through Hot Pressing Method. Mater. Des. 2012, 42, 21–24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, Y.; Chen, X.; Li, C.; Huang, Y. The Improvement of Bonding Strength of W/Cu Joints via Nano-Treatment of the W Surface. Metals 2021, 11, 844. https://doi.org/10.3390/met11050844
Li F, Chen Y, Chen X, Li C, Huang Y. The Improvement of Bonding Strength of W/Cu Joints via Nano-Treatment of the W Surface. Metals. 2021; 11(5):844. https://doi.org/10.3390/met11050844
Chicago/Turabian StyleLi, Fei, Yuanyuan Chen, Xin Chen, Cai Li, and Yuan Huang. 2021. "The Improvement of Bonding Strength of W/Cu Joints via Nano-Treatment of the W Surface" Metals 11, no. 5: 844. https://doi.org/10.3390/met11050844
APA StyleLi, F., Chen, Y., Chen, X., Li, C., & Huang, Y. (2021). The Improvement of Bonding Strength of W/Cu Joints via Nano-Treatment of the W Surface. Metals, 11(5), 844. https://doi.org/10.3390/met11050844