Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel
Abstract
:1. Introduction
2. Laser Hardening Efficiency
3. Experimental Methods
4. Results and Discussion
4.1. Hardening Efficiency Analysis
4.1.1. Effect of Processing Parameters
4.1.2. Effect of Pulse Duration
4.1.3. Effect of Laser Wavelength
4.2. Microstructural Changes during Hardening
5. Conclusions
- Hardening efficiency typically ranges from 1% to 15% for most studies, suggesting that only a small fraction of laser energy is utilized for hardening.
- The efficiency can significantly vary even for the same laser system depending on the process parameters used. Generally, a high-power laser system with a large beam spot yields higher hardening efficiency compared to a low-power laser.
- Maximum hardening efficiency is achieved when surface melting is just avoided. The maximum value is calculated to be 4.95% for the fiber laser used.
- For a similar hardening effect, the ms laser is almost twice as efficient than the cw laser.
- The hardening efficiency of the blue laser (445 nm wavelength) is more than two times that of a diode laser (1.06 μm wavelength). This is primarily due to the higher beam absorption by the steel for shorter wavelengths, which makes a large amount of laser energy available for hardening compared to longer wavelengths.
- Surface hardening generates a gradient microstructure in the laser-hardened region with a predominantly martensitic microstructure. This is due to the rapid quenching process and the decrease in thermal cycling over the depth. A maximum hardness of approximately 8.36 GPa was obtained in the hardened region which was approximately three times higher than in the base material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basu, A.; Chakraborty, J.; Shariff, S.M.; Padmanabham, G.; Joshi, S.V.; Sundararajan, G.; Dutta Majumdar, J.; Manna, I. Laser surface hardening of austempered (bainitic) ball bearing steel. Scr. Mater. 2007, 56, 887–890. [Google Scholar] [CrossRef]
- Li, W.-B.; Easterling, K.E. Residual stresses in laser transformation hardened steel. Surf. Eng. 1986, 2, 43–48. [Google Scholar] [CrossRef]
- Patwa, R.; Shin, Y.C. Predictive modeling of laser hardening of AISI5150H steels. Int. J. Mach. Tools Manuf. 2007, 47, 307–320. [Google Scholar] [CrossRef]
- Moradi, M.; Fallah, M.M.; Jamshidi Nasab, S. Experimental Study of Surface Hardening of AISI 420 Martensitic Stainless Steel Using High Power Diode Laser. Trans. Indian Inst. Met. 2018, 71, 2043–2050. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Zhou, Y.; Guan, Y.; Wu, N. Comparative study of laser surface hardening of 50CrMo4 steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration. Surf. Coat. Technol. 2019, 366, 311–320. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Wu, N. Direct laser hardening of AISI 1020 steel under controlled gas atmosphere. Surf. Coat. Technol. 2020, 385, 125399. [Google Scholar] [CrossRef]
- Frerichs, F.; Lu, Y.; Lübben, T.; Radel, T. Process signature for laser hardening. Metals 2021, 11, 465. [Google Scholar] [CrossRef]
- Reti, T.; Bagyinszki, G.; Felde, I.; Verö, B.; Bell, T. Prediction of as-quenched hardness after rapid austenitization and cooling of surface hardened steels. Comput. Mater. Sci. 1999, 15, 101–112. [Google Scholar] [CrossRef]
- Lakhkar, R.S.; Shin, Y.C.; Krane, M.J.M. Predictive modeling of multi-track laser hardening of AISI 4140 steel. Mater. Sci. Eng. A 2008, 480, 209–217. [Google Scholar] [CrossRef]
- Steen, W.M. Laser Material Processing, 3rd. ed.; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 1852336986. [Google Scholar]
- Yilbas, B.S. Laser cutting quality assessment and thermal efficiency analysis. J. Mater. Process. Technol. 2004, 155, 2106–2115. [Google Scholar] [CrossRef]
- Rosenthal, D. The Theory of Moving Source of Heat and its Application to Metal Transfer. ASME Trans. 1946, 43, 849–866. [Google Scholar]
- Katsamas, A.I. A computational study of austenite formation kinetics in rapidly heated steels. Surf. Coat. Technol. 2007, 201, 6414–6422. [Google Scholar] [CrossRef]
- Tajima, M.; Umeyama, Y. Latent heats of phase transformations in iron and steels. High Temp. High Press. 2002, 34, 91–97. [Google Scholar] [CrossRef]
- Ameri, M.H.; Ghaini, F.M.; Torkamany, M.J. Investigation into the efficiency of a fiber laser in surface hardening of ICD-5 tool steel. Opt. Laser Technol. 2018, 107, 150–157. [Google Scholar] [CrossRef]
- Wang, H.; Kawahito, Y.; Yoshida, R.; Nakashima, Y.; Shiokawa, K. Development of a high-power blue laser (445 nm) for material processing. Opt. Lett. 2017, 42, 2251–2254. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Balck, A.; Malchus, J.; Chacko, R.V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; et al. 1000 W blue fiber-coupled diode-laser emitting at 450 nm. In Proceedings of the SPIE 10900, High-Power Diode Laser Technology XVII, 1090005, San Francisco, CA, USA, 3–5 February 2019. [Google Scholar]
- Chi, H.; Wang, Y.; Davenport, A.; Menoni, C.S.; Rocca, J.J. Demonstration of a kilowatt average Power, 1 Joule, green Laser. Opt. Lett. 2021, 45, 6803–6806. [Google Scholar] [CrossRef]
- Li, R.; Jin, Y.; Li, Z.; Qi, K. A comparative study of high-power diode laser and CO2 laser surface hardening of AISI 1045 steel. J. Mater. Eng. Perform. 2014, 23, 3085–3091. [Google Scholar] [CrossRef]
- Selvan, J.S.; Subramanian, K.; Nath, A.K. Effect of laser surface hardening on En18 (AISI 5135) steel. J. Mater. Process. Technol. 1999, 91, 29–36. [Google Scholar] [CrossRef]
- Krauss, G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A 1999, 273, 40–57. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Zhou, Y.; Wu, N. Decarburization during laser surface processing of steel. Appl. Phys. A 2018, 124, 682. [Google Scholar] [CrossRef]
Elements | C | Cr | Mn | Mo | Si | P | S | Fe |
wt% | 0.51 | 0.95 | 0.88 | 0.20 | 0.23 | 0.04 | 0.04 | Bal. |
S.N. | Power (W) | Speed (mm/s) | Beam Spot Diameter (mm) | Heat Input (J/mm2) |
---|---|---|---|---|
1 | 200 | 75 | 0.5 | 5.3 |
2 | 230 | 75 | 0.5 | 6.1 |
3 | 200 | 50 | 0.5 | 8.0 |
4 | 230 | 50 | 0.5 | 9.2 |
5 | 150 | 25 | 0.5 | 12.0 |
6 | 200 | 25 | 0.5 | 16.0 |
7 | 230 | 25 | 0.5 | 18.4 |
8 | 150 | 10 | 0.5 | 30.0 |
9 | 200 | 10 | 0.5 | 40.0 |
10 | 230 | 10 | 0.5 | 46.0 |
Laser Type | Power (W) | Wave Length (μm) | Type of Steel | Max. Hardening Efficiency (%) | Ref. |
---|---|---|---|---|---|
Fiber laser | 230 | 1.07 | 50CrMo4 steel | 4.95 | - |
CO2 laser | 2500 | 10.6 | AISI 1045 | 4.59 | [19] |
CO2 laser | 1500 | 10.6 | AISI 5135 (coated with MoS2) | 8.02 | [20] |
Diode laser | 1400 | 1.06 | AISI 420 | 9.68 | [4] |
Blue laser | 250 | 0.445 | AISI 420 | 22.85 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharjan, N.; Wu, N.; Zhou, W. Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel. Metals 2021, 11, 2015. https://doi.org/10.3390/met11122015
Maharjan N, Wu N, Zhou W. Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel. Metals. 2021; 11(12):2015. https://doi.org/10.3390/met11122015
Chicago/Turabian StyleMaharjan, Niroj, Naien Wu, and Wei Zhou. 2021. "Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel" Metals 11, no. 12: 2015. https://doi.org/10.3390/met11122015
APA StyleMaharjan, N., Wu, N., & Zhou, W. (2021). Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel. Metals, 11(12), 2015. https://doi.org/10.3390/met11122015